2023年江苏省徐州市中考数学试卷
展开2023年江苏省徐州市中考数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置)
1.(3分)下列事件中的必然事件是( )
A.地球绕着太阳转
B.射击运动员射击一次,命中靶心
C.天空出现三个太阳
D.经过有交通信号灯的路口,遇到红灯
2.(3分)下列图案是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
3.(3分)如图,数轴上点A、B、C、D分别对应实数a、b、c、d,下列各式的值最小的是( )
A.|a| B.|b| C.|c| D.|d|
4.(3分)下列运算正确的是( )
A.a2•a3=a6 B.a4÷a2=a2
C.(a3)2=a5 D.2a2+3a2=5a4
5.(3分)徐州云龙山共九节,蜿蜒起伏,形似游龙,每节山的海拔如图所示.
其中,海拔为中位数的是( )
A.第五节山 B.第六节山 C.第八节山 D.第九节山
6.(3分)的值介于( )
A.25与30之间 B.30与35之间 C.35与40之间 D.40与45之间
7.(3分)在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为( )
A.y=(x+3)2+2 B.y=(x﹣1)2+2 C.y=(x﹣1)2+4 D.y=(x+3)2+4
8.(3分)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且,则AE的长为( )
A.1 B.2 C.1或 D.1或2
二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)
9.(3分)若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为 (写出一个即可).
10.(3分)“五一”假期我市共接待游客约4370000人次,将4370000用科学记数法表示为 .
11.(3分)若有意义,则x的取值范围是 .
12.(3分)正五边形的一个外角等于 °.
13.(3分)若关于x的方程x2﹣4x+m=0有两个相等的实数根,则实数m的值为 .
14.(3分)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C= °.
15.(3分)如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= °.
16.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为 cm.
17.(3分)如图,点P在反比例函数的图象上,PA⊥x轴于点A,PB⊥y轴于点B,PA=PB.一次函数y=x+1的图象与PB交于点D,若D为PB的中点,则k的值为 .
18.(3分)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为 .
三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(10分)计算:
(1);
(2).
20.(10分)(1)解方程组;
(2)解不等式组 .
21.(7分)为了解某地区九年级学生的视力情况,从该地区九年级学生中抽查了部分学生,根据调查结果,绘制了如下两幅不完整的统计图.
根据以上信息,解决下列问题:
(1)此次调查的样本容量为 ;
(2)扇形统计图中A对应圆心角的度数为 °;
(3)请补全条形统计图;
(4)若该地区九年级学生共有25000人,请估计其中视力正常的人数.
22.(7分)甲,乙、丙三人到淮海战役烈士纪念塔园林游览,若每人分别从纪念塔、纪念馆这两个景点中选择一个参观,且选择每个景点的机会相等,则三人选择相同景点的概率为多少?
23.(8分)随着2022年底城东快速路的全线通车,徐州主城区与东区之间的交通得以有效改善,如图基人乘车从徐州东站至戏马台景区,可沿甲路线或乙路线前往.已知甲、乙两条路线的长度均为12km,甲路线的平均速度为乙路线的倍,甲路线的行驶时间比乙路线少10min,求甲路线的行驶时间.
24.(8分)如图,正方形纸片ABCD的边长为4,将它剪去4个全等的直角三角形,得到四边形EFGH.设AE的长为x,四边形EFGH的面积为y.
(1)求y关于x的函数表达式;
(2)当AE取何值时,四边形EFGH的面积为10?
(3)四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
25.(8分)徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C处,用测角仪测得塔顶A的仰角∠AFE=36°,他在平地上沿正对电视塔的方向后退至点D处,测得塔顶A的仰角∠AGE=30°.若测角仪距地面的高度FC=GD=1.6m,CD=70m,求电视塔的高度AB(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin30°≈0.50,cos30°≈0.87,tan30°≈0.58)
26.(8分)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的病圆型器物,据《尔雅•释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现来看,这两种玉器的“肉”与“好”未必符合该比例关系.
(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为 ;
(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法):
①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?
②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.
27.(10分)【阅读理解】如图1,在矩形ABCD中,若AB=a,BC=b,由勾股定理,得AC2=a2+b2同理BD2=a2+b2,故AC2+BD2=2(a2+b2).
【探究发现】如图2,四边形ABCD为平行四边形,若AB=a,BC=b,则上述结论是否依然成立?请加以判断,并说明理由.
【拓展提升】如图3,已知BO为△ABC的一条中线,AB=a,BC=b,AC=c.
求证:.
【尝试应用】如图4,在矩形ABCD中,若AB=8,BC=12,点P在边AD上,则PB2+PC2的最小值为 .
28.(10分)如图,在平面直角坐标系中,二次函数的图象与x轴分别交于点O、A,顶点为B.连接OB、AB,将线段AB绕点A按顺时针方向旋转60°得到线段AC,连接BC.点D、E分别在线段OB、BC上,连接AD、DE、EA,DE与AB交于点F,∠DEA=60°.
(1)求点A、B的坐标;
(2)随着点E在线段BC上运动.
①∠EDA的大小是否发生变化?请说明理由;
②线段BF的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;
(3)当线段DE的中点在该二次函数的图象的对称轴上时,△BDE的面积为 .
2023年江苏省徐州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置)
1.(3分)下列事件中的必然事件是( )
A.地球绕着太阳转
B.射击运动员射击一次,命中靶心
C.天空出现三个太阳
D.经过有交通信号灯的路口,遇到红灯
【分析】根据随机事件、必然事件、不可能事件的定义对4个选项进行分析.
【解答】解:地球绕着太阳转是必然事件,所以A符合题意;
射击运动员射击一次,命中靶心是随机事件,所以B不符合题意;
天空出现三个太阳是不可能事件,所以C不符合题意;
经过有交通信号灯的路口遇到红灯是随机事件,所以D不符合题意.
故选:A.
【点评】本题主要考查了随机事件、必然事件、不可能事件的定义,难度不大,认真分析即可.
2.(3分)下列图案是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、原图是中心对称图形,不是轴对称图形,故此选项符合题意;
B、原图是轴对称图形,不是中心对称图形,故此选项不合题意;
C、原图既是轴对称图形,又是中心对称图形,故此选项不合题意;
D、原图既不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:A.
【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3.(3分)如图,数轴上点A、B、C、D分别对应实数a、b、c、d,下列各式的值最小的是( )
A.|a| B.|b| C.|c| D.|d|
【分析】结合数轴得出a,b,c,d四个数的绝对值大小进行判断即可.
【解答】解:由数轴可得点A离原点距离最远,其次是D点,再次是B点,C点离原点距离最近,
则|a|>|d|>|b|>|c|,
其中值最小的是|c|,
故选:C.
【点评】本题考查实数与数轴的关系及绝对值的几何意义,离原点越近的点所表示的数的绝对值越小是解题的关键.
4.(3分)下列运算正确的是( )
A.a2•a3=a6 B.a4÷a2=a2
C.(a3)2=a5 D.2a2+3a2=5a4
【分析】根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则、合并同类项法则分别进行判断即可.
【解答】解:A、a2•a3=a5,故此选项不符合题意;
B、a4÷a2=a2,故此选项符合题意;
C、(a3)2=a6,故此选项不符合题意;
D、2a2+3a2=5a2,故此选项不符合题意;
故选:B.
【点评】本题考查了合并同类项法则、同底数幂的除法法则、幂的乘方法则、同底数幂的乘法法则,熟练掌握这些法则是解题的关键.
5.(3分)徐州云龙山共九节,蜿蜒起伏,形似游龙,每节山的海拔如图所示.
其中,海拔为中位数的是( )
A.第五节山 B.第六节山 C.第八节山 D.第九节山
【分析】排序后找到位于中间位置的数即可.
【解答】解:观察折线图发现:排序后位于中间位置的数为131.8m.
故选:C.
【点评】本题考查了中位数的知识,解题的关键是了解中位数的概念,难度较小.
6.(3分)的值介于( )
A.25与30之间 B.30与35之间 C.35与40之间 D.40与45之间
【分析】一个正数越大,其算术平方根越大,据此进行估算即可.
【解答】解:∵1600<2023<2025,
∴<<,
即40<<45,
故选:D.
【点评】本题考查无理数的估算,此为基础且重要知识点,必须熟练掌握.
7.(3分)在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为( )
A.y=(x+3)2+2 B.y=(x﹣1)2+2 C.y=(x﹣1)2+4 D.y=(x+3)2+4
【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
【解答】解:将二次函数y=(x+1)2+3的图集向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为y=(x+1﹣2)2+3﹣1,即y=(x﹣1)2+2.
故选:B.
【点评】本题主要考查二次函数的几何变换,掌握“左加右减,上加下减”的法则是解题的关键.
8.(3分)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且,则AE的长为( )
A.1 B.2 C.1或 D.1或2
【分析】由直角三角形的性质可求AC=2BC=4,AB=2,∠C=60°,分两种情况讨论,由三角形中位线定理和相似三角形的性质可求解.
【解答】解:在△ABC中,∠B=90°,∠A=30°,BC=2,
∴AC=2BC=4,AB=2,∠C=60°,
∵点D是AB的中点,
∴AD=,
∵,
∴DE=1,
如图,当∠ADE=90°时,
∵∠ADE=∠ABC,,
∴△ADE∽△ABC,
∴,
∴AE=2,
如图,当∠ADE≠90°时,取AC的中点H,连接DH,
∵点D是AB中点,点H是AC的中点,
∴DH∥BC,DH=BC=1,
∴∠AHD=∠C=60°,DH=DE=1,
∴∠DEH=60°,
∴∠ADE=∠A=30°,
∴AE=DE=1,
故选:D.
【点评】本题考查了相似三角形的判定和性质,直角三角形的性质,利用分类讨论思想解决问题是解题的关键.
二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)
9.(3分)若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为 3或4或5或6或7(答案不唯一) (写出一个即可).
【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.
【解答】解:设三角形的第三边长为x,
则5﹣3<x<5+3,即2<x<8,
∵第三边的长为整数,
∴x=3或4或5或6或7.
故答案为:3或4或5或6或7(答案不唯一).
【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.
10.(3分)“五一”假期我市共接待游客约4370000人次,将4370000用科学记数法表示为 4.37×106 .
【分析】科学记数法的表示形式为a×10n,据此解答即可.
【解答】解:4370000=4.37×106,
故答案为:4.37×106.
【点评】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a和n的值.
11.(3分)若有意义,则x的取值范围是 x≥3 .
【分析】根据二次根式有意义的条件,即被开方数大于或等于0解答即可.
【解答】解:若有意义,
则x﹣3≥0,
∴x≥3,
即x的取值范围是x≥3,
故答案为:x≥3.
【点评】本题主要考查了二次根式有意义的条件,熟知:若有意义,则a≥0.
12.(3分)正五边形的一个外角等于 72 °.
【分析】根据多边形的外角和是360°,即可求解.
【解答】解:正五边形的一个外角==72°,
故答案为:72.
【点评】本题考查多边形的内角与外角,正确理解多边形的外角和是360°是关键.
13.(3分)若关于x的方程x2﹣4x+m=0有两个相等的实数根,则实数m的值为 4 .
【分析】根据根的判别式的意义得到Δ=(﹣4)2﹣4m=0,然后解一次方程即可.
【解答】解:根据题意得Δ=(﹣4)2﹣4m=0,
解得m=4.
故答案为:4.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
14.(3分)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C= 55 °.
【分析】根据平行线的性质以及平行四边形的判定和性质进行计算即可.
【解答】解:如图,过点F作FH∥BC交AC于点H,
∵DE∥BC,
∴DE∥FH,
∴∠FDE+∠DFH=180°,
∵∠FDE=120°,
∴∠DFH=180°﹣120°=60°,
∵∠DFG=115°,
∴∠GFH=115°﹣60°=55°,
∵FG∥HC,FH∥CG,
∴四边形CGFH是平行四边形,
∴∠C=∠GFH=55°,
故答案为:55.
【点评】本题考查平行线的性质,三角形内角和定理以及平行四边形的判定和性质,掌握平行线的性质,平行四边形的性质和判定是正确解答的前提.
15.(3分)如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= 66 °.
【分析】先根据切线的性质得出∠ABF=90°,结合∠AFB=68°可求出∠BAF的度数,再根据弧之间的关系得出它们所对的圆周角之间的关系,最后根据三角形外角的性质即可求出∠DEB的度数.
【解答】解:如图,连接OC,OD,
∵BF是⊙O的切线,AB是⊙O的直径,
∴OB⊥BF,
∴∠ABF=90°,
∵∠AFB=68°,
∴∠BAF=90°﹣∠AFB=22°,
∴∠BOD=2∠BAF=44°,
∵,
∴∠COA=2∠BOD=88°,
∴∠CDA=,
∵∠DEB是△AED的一个外角,
∴∠DEB=∠BAF+∠CDA=66°,
故答案为:66.
【点评】本题考查了切线的性质,圆周角定理,三角形外角的性质,熟知:圆的切线垂直于过切点的半径;一条弧所对的圆周角等于它所对的圆心角的一半.
16.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为 2 cm.
【分析】首先求得展开之后扇形的弧长也就是圆锥的底面周长,进一步利用弧长计算公式求得圆锥的底面圆的半径r.
【解答】解:由题意得:母线l=6,θ=120°,
2πr=,
∴r=2(cm).
故答案为:2.
【点评】本题考查了圆锥的计算及其应用问题,解题的关键是灵活运用有关定理来分析、判断、推理或解答.
17.(3分)如图,点P在反比例函数的图象上,PA⊥x轴于点A,PB⊥y轴于点B,PA=PB.一次函数y=x+1的图象与PB交于点D,若D为PB的中点,则k的值为 4 .
【分析】设一次函数图象与x轴的交点为M,与y轴的交点为N,则M(﹣1,0),N(0,1),易证得四边形AOBP是正方形,则PB∥x轴,PB=OB,即可证得△DBN∽△MON,求得BD=BN,由D为PB的中点,可知N为OB的中点,得出OB=2ON=2,从而得出P(2,2),利用待定系数法即可求得k.
【解答】解:设一次函数图象与x轴的交点为M,与y轴的交点为N,则M(﹣1,0),N(0,1),
∴OM=ON=1,
∵PA⊥x轴于点A,PB⊥y轴于点B,PA=PB,
∴四边形AOBP是正方形,
∴PB∥x轴,PB=OB,
∴△DBN∽△MON,
∴==1,
∴BD=BN,
∵D为PB的中点,
∴N为OB的中点,
∴OB=2ON=2,
∴PB=OB=2,
∴P(2,2),
∴点P在反比例函数的图象上,
∴k=2×2=4,
故答案为:4.
【点评】本题考查了反比例函数图象上点的坐标特征,一次函数图象上点的坐标特征,正方形的判定和性质,三角形相似的判定和性质,求得P点的坐标是解题的关键.
18.(3分)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为 .
【分析】由折叠性质可知AC=AC'=3,然后根据三角不等关系可进行求解.
【解答】解:∵∠C=90°,CA=CB=3,
∴,
由折叠的性质可知AC=AC'=3,
∵BC'≥AB﹣AC',
∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,
故答案为 .
【点评】本题主要考查勾股定理、折叠的性质及三角不等关系,熟练掌握勾股定理、折叠的性质及三角不等关系是解题的关键.
三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(10分)计算:
(1);
(2).
【分析】(1)根据绝对值、零指数幂法则、负整数指数幂法则、算术平方根的意义进行计算即可;
(2)根据分式的混合运算法则计算即可.
【解答】解:(1)
=2023+1﹣6+4
=2022;
(2)
=
=
=.
【点评】本题考查了分式的混合运算,实数的混合运算,熟练掌握运算法则是解题的关键.
20.(10分)(1)解方程组;
(2)解不等式组 .
【分析】(1)利用代入消元法,进行计算即可解答;
(2)按照解一元一次不等式组的步骤,进行计算即可解答.
【解答】解:(1),
把①代入②中得:
2(4y+1)﹣5y=8,
解得:y=2,
把y=2代入①得:
x=4×2+1=9,
∴原方程组的解为:.
(2),
解不等式①得:x≤2,
解不等式②得:x>﹣8,
∴不等式组的解集为:﹣8<x≤2.
【点评】本题考查了解一元一次不等式组,解二元一次方程组,在数轴上表示不等式的解集,准确熟练地进行计算是解题的关键.
21.(7分)为了解某地区九年级学生的视力情况,从该地区九年级学生中抽查了部分学生,根据调查结果,绘制了如下两幅不完整的统计图.
根据以上信息,解决下列问题:
(1)此次调查的样本容量为 450 ;
(2)扇形统计图中A对应圆心角的度数为 36 °;
(3)请补全条形统计图;
(4)若该地区九年级学生共有25000人,请估计其中视力正常的人数.
【分析】(1)用C的人数除以C所占百分比可得样本容量;
(2)用360°乘A所占比例可得答案;
(3)用样本容量分别减去其它三部分的人数,可得B的人数,进而补全条形统计图;
(4)用该地区九年级学生总人数乘样本中A所占比例即可.
【解答】解:(1)此次调查的样本容量为:117÷26%=450,
故答案为:450;
(2)扇形统计图中A对应圆心角的度数为:360°×=36°,
故答案为:36;
(3)样本中B的人数为:450﹣45﹣117﹣233=55(人),
补全条形统计图如下:
(4)25000×=2500(人),
答:其中视力正常的人数大约为2500人.
【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
22.(7分)甲,乙、丙三人到淮海战役烈士纪念塔园林游览,若每人分别从纪念塔、纪念馆这两个景点中选择一个参观,且选择每个景点的机会相等,则三人选择相同景点的概率为多少?
【分析】画树状图,共有8种等可能的结果,其中甲,乙、丙三人选择相同景点的结果有2种,再由概率公式求解即可.
【解答】解:把纪念塔、纪念馆这两个景点分别记为A、B,
画树状图如下:
共有8种等可能的结果,其中甲,乙、丙三人选择相同景点的结果有2种,
∴甲,乙、丙三人选择相同景点的概率为=.
【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
23.(8分)随着2022年底城东快速路的全线通车,徐州主城区与东区之间的交通得以有效改善,如图基人乘车从徐州东站至戏马台景区,可沿甲路线或乙路线前往.已知甲、乙两条路线的长度均为12km,甲路线的平均速度为乙路线的倍,甲路线的行驶时间比乙路线少10min,求甲路线的行驶时间.
【分析】设甲路线的行驶时间为xmin,则乙路线的行驶时间为(x+10)min,根据甲路线的平均速度为乙路线的倍,列出分式方程,解方程即可.
【解答】解:设甲路线的行驶时间为xmin,则乙路线的行驶时间为(x+10)min,
由题意得:=×,
解得:x=20,
经检验,x=20是原方程的解,且符合题意,
答:甲路线的行驶时间为20min.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
24.(8分)如图,正方形纸片ABCD的边长为4,将它剪去4个全等的直角三角形,得到四边形EFGH.设AE的长为x,四边形EFGH的面积为y.
(1)求y关于x的函数表达式;
(2)当AE取何值时,四边形EFGH的面积为10?
(3)四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
【分析】(1)根据正方形和全等三角形的性质得到AB=AD=BC=CD=4,AE=DH=x,BE=AH=4﹣x,∠A=∠D=90°,EH=HG=FG=EF,∠AEH=∠GHD,根据勾股定理即可得到结论;
(2)当解方程即可得到结论;
(3)把二次函数化成顶点式,根据二次函数的性质即可得到结论.
【解答】解:(1)∵正方形纸片ABCD的边长为4,4个直角三角形全等,
∴AB=AD=BC=CD=4,AE=DH=x,BE=AH=4﹣x,∠A=∠D=90°,EH=HG=FG=EF,∠AEH=∠GHD,∵∠AEH+∠AHE=90°,
∴∠AHE+∠DHG=90°,
∴∠EHG=90°,
∴四边形EFGH是正方形,
∴y=AE2+AH2=x2+(4﹣x)2=2x2﹣8x+16;
(2)当y=10时,即2x2﹣8x+16=10,
解得x=1或x=3,
答:当AE取1或3时,四边形EFGH的面积为10;
(3)∵y=2x2﹣8x+16=2(x﹣2)2+8,
∵2>0,
∴y有最小值,最小值为8.
即四边形EFGH的面积有最小值,最小值为8.
【点评】本题是四边形的综合题,考查了勾股定理,正方形 的判定和性质,全等三角形的性质,二次函数的性质,熟练掌握正方形和全等三角形的性质是解题的关键.
25.(8分)徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C处,用测角仪测得塔顶A的仰角∠AFE=36°,他在平地上沿正对电视塔的方向后退至点D处,测得塔顶A的仰角∠AGE=30°.若测角仪距地面的高度FC=GD=1.6m,CD=70m,求电视塔的高度AB(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin30°≈0.50,cos30°≈0.87,tan30°≈0.58)
【分析】根据题意可得:GE⊥AB,EB=FC=GD=1.6m,FG=CD=70m,EF=BC,然后设EF=BC=xm,则GE=(x+70)m,在Rt△AEG中,利用锐角三角函数的定义求出AE的长,再在Rt△AEF中,利用锐角三角函数的定义求出AE的长,从而列出关于x的方程,进行计算即可解答.
【解答】解:由题意得:GE⊥AB,EB=FC=GD=1.6m,FG=CD=70m,EF=BC,
设EF=BC=xm,
∴GE=EF+FG=(x+70)m,
在Rt△AEG中,∠AGE=30°,
∴AE=EG•tan30°≈0.58(x+70)m,
在Rt△AEF中,∠AFE=36°,
∴AE=EF•tan36°≈0.73x(m),
∴0.73x=0.58(x+70),
解得:x≈270.67,
∴AE=0.73x≈197.59(m),
∴AB=AE+BE=197.59+1.6≈199.2(m),
∴电视塔的高度AB约为199.2m.
【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.
26.(8分)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的病圆型器物,据《尔雅•释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现来看,这两种玉器的“肉”与“好”未必符合该比例关系.
(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为 32:27 ;
(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法):
①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?
②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.
【分析】(1)根据圆环面积可进行求解;
(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;
②先确定好圆的圆心,然后根据平行线 所截线段成比例可进行作图.
【解答】解:(1)由图1可知:璧的“肉”的面积为 π×(32﹣12)=8π;环的“肉”的面积为 π×(32﹣1.52)=6.75π,
∴它们的面积之比为 8 π:6.75 π=32:27;
故答案为32:27;
(2)①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A、B、C,则分别以A、B为圆心,大于 长为半径画弧,交于两点,连接这两点,同理可画出线段AC的垂直平分线,线段AB,AC的垂直平分线的交点即为圆心O,过圆心O画一条直径,以O为圆心,内圆半径 为半径画弧,看是否满足“肉好若一”的比例关系即可,由作图可知满足比例关系为1:2:1的关系,符合“肉好若一”;
②按照①中作出圆的圆心O,过圆心画一条直径AB,过点A作一条射线,然后以A为圆心,适当长为半 径画弧,把射线三等分,交点分别为C、D、E,连接BE,然后分别过点C、D作BE的平行线,交AB于 点F、G,进而以FG为直径画圆,则问题得解;如图所示:
【点评】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的有关知识,属于中考常考题型.
27.(10分)【阅读理解】如图1,在矩形ABCD中,若AB=a,BC=b,由勾股定理,得AC2=a2+b2同理BD2=a2+b2,故AC2+BD2=2(a2+b2).
【探究发现】如图2,四边形ABCD为平行四边形,若AB=a,BC=b,则上述结论是否依然成立?请加以判断,并说明理由.
【拓展提升】如图3,已知BO为△ABC的一条中线,AB=a,BC=b,AC=c.
求证:.
【尝试应用】如图4,在矩形ABCD中,若AB=8,BC=12,点P在边AD上,则PB2+PC2的最小值为 200 .
【分析】【阅读理解】根据矩形对角线相等可得AC=BD,最后由勾股定理可得结论;
【探究发现】首先作AE⊥BC于E,DF⊥BC于F,根据全等三角形判定的方法,判断出△ABE≌△DCF,即可判断出AE=DF,BE=CF;然后根据勾股定理,可得AC2=AE2+(BC﹣BE)2,BD2=DF2+(BC+BE)2,AB2=AE2+BE2,再根据AB=DC,AD=BC,即可推得结论;
【拓展提升】根据平行四边形的判定定理得到四边形ABCE是平行四边形,由【探究发现】,可得BE2+AC2=2AB2+2BC2,于是得到结论;
【尝试应用】过P作PH⊥BC于H,根据矩形的性质得到AB=PH=CD=8,AP=BH,PD=CH,设BH=x,CH=12﹣x,根据勾股定理和二次函数的性质即可得到结论.
【解答】【阅读理解】解:如图1,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,
∴AC2=AB2+BC2,
∵AB=a,BC=b,
∴AC2+BD2=2(AB2+BC2)=2a2+2b2;
【探究发现】解:上述结论依然成立,
理由:如图②,作AE⊥BC于E,DF⊥BC于F,
∵四边形ABCD是平行四边形,
∴AB∥DC,且AB=DC,
∴∠ABE=∠DCF,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(AAS),
∴AE=DF,BE=CF,
在Rt△ACE中,由勾股定理,可得
AC2=AE2+CE2=AE2+(BC﹣BE)2…①,
在Rt△BDF中,由勾股定理,可得
BD2=DF2+BF2=DF2+(BC+CF)2=DF2+(BC+BE)2…②,
由①②,可得
AC2+BD2=AE2+DF2+2BC2+2BE2=2AE2+2BC2+2BE2,
在Rt△ABE中,由勾股定理,可得
AB2=AE2+BE2,
∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2=2AB2+2BC2=2a2+2b2;
【拓展提升】证明:如图3,延长BO至点E,使BO=OE,
∵BO是BC边上的中线,
∴AO=CD,
又∵AD=CO,
∴四边形ABCE是平行四边形,
由【探究发现】,可得BE2+AC2=2AB2+2BC2,
∵BE=2BO,
∴BE2=4BO2,
∵AB=a,BC=b,AC=c,
∴4BO2+c2=2a2+2b2,
∴.
【尝试应用】解:过P作PH⊥BC于H,
则四边形APHB和四边形PHCD是矩形,
∴AB=PH=CD=8,AP=BH,PD=CH,
设BH=x,CH=12﹣x,
∴PB2+PC2=PH2+BH2+PH2+CH2=82+x2+82+(12﹣x)2=2x2﹣24x+272=2(x﹣6)2+200,
故PB2+PC2的最小值为200,
故答案为:200.
【点评】本题是四边形综合题,考查了全等三角形的判定和性质的应用,平行四边形判定和性质的应用,以及勾股定理的应用,构建直角三角形利用勾股定理列式是解本题的关键.
28.(10分)如图,在平面直角坐标系中,二次函数的图象与x轴分别交于点O、A,顶点为B.连接OB、AB,将线段AB绕点A按顺时针方向旋转60°得到线段AC,连接BC.点D、E分别在线段OB、BC上,连接AD、DE、EA,DE与AB交于点F,∠DEA=60°.
(1)求点A、B的坐标;
(2)随着点E在线段BC上运动.
①∠EDA的大小是否发生变化?请说明理由;
②线段BF的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;
(3)当线段DE的中点在该二次函数的图象的对称轴上时,△BDE的面积为 .
【分析】(1)令y=0,由,可求得A点的坐标,把解析式化为顶点坐标式或代入顶点坐标公式都可求得B点的坐标;
(2)①在线段AB上截取BG=BE,连接EG,先证△DBE≌△AGE,再证△AED是等边三角形,从而得证;
②因为BF=AB﹣AF,所以转化为求AF长度的最小值,由垂线段最短可解决问题;
(3)设DE的中点为M,连接AM,过点D作DN⊥对称轴于点N,先证△BEM≌△NDM,再证Rt△BME∽Rt△HAM,而相似比恰好是定值,从而解决问题.
【解答】解:令y=0,得:
,
解得:x1=0,x2=2,
∴A(2,0),
∵y=﹣=,
∴顶点的坐标为(1,);
(2)①在线段AB上截取BG=BE,连接EG,
由已知可得:∠BAC=60°,AB=AC,
∴△ABC是等边三角形,
∴AB=AC=BC,∠C=60°,
由(1)可抛物线对称轴是直线x=1,
∴OH=1,
∴OB=,
AB==2,
∴AB=OA=OB,
∴△AOB是等边三角形,
∴OA=OB=AC=BC=AB=2,
∠AOB=∠OBA=∠OAB=60°,
∵∠GBE=60°,BG=BE,
∴△BGE是等边三角形,
∴∠BGE=∠BEG=∠GBE=60°,BE=GE,
∴∠AGE=180°﹣∠BGE=120°,
又∵∠DBE=∠OBA+∠ABC=120°,
∴∠DBE=∠AGE,
∵∠BED+∠DEG=∠GEA+∠DEG=60°,
∴∠BED=∠GEA,
∴△DBE≌△AGE(AAS),
∴DE=AE,
又∠AED=60°,
∴△AED是等边三角形,
∴∠EDA=60°,
即∠EDA的大小保持不变;
②∵BF=AB﹣AF=2﹣AF,
∴当AF最小时,BF的值最大,
∴当AF⊥DE时,BF取最大值;
∵△ADE是等边三角形,
∴∠DAF=∠DAE=30°,
∴∠DAO=∠BAO﹣∠DAF=30°,
∴∠ODA=∠DOA+∠DAO=90°,
在Rt△AOD中,∠AOD=60°,OA=2,
∴AD=OA•sin60°=2×=,
同理可求,AF=,
∴BF=AB﹣AF=,
∴线段BF的长度最大值为;
(3)设DE的中点为M,连接AM,过点D作DN⊥对称轴于点N,
∵OA=OB=AC=BC=AB,
∴四边形OACB是菱形,
∴OA∥BC,
∵DN⊥BH,
∴OA∥BC∥DN,
∴∠EBM=∠DNM,∠BEM=∠NDM,
又∵DM=EM,
∴△BEM≌△NDM(AAS),
∴DN=EB,
∵AD=AE,DM=ME,
∴AM⊥DE,
∴∠AME=90°,
∴∠BME+∠HMA=90°,
∵∠BME+∠BEM=90°,
∴∠HMA=∠BEM,
∴Rt△BME∽Rt△HAM,
∴,
∴,
∴BM=,
∴MH=BH﹣BM=,
∴DN=BE=,
∴S△BDE=S△BDM+S△EBM==;
故答案为:.
【点评】本题主要考查了二次函数的图象及性质,菱形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,等边三角形的判定及性质以及解直角三角形,题目综合性较强,熟练掌握各知识点是解题的关键.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/7/8 9:29:29;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557
2019年江苏省徐州市中考数学试卷与答案: 这是一份2019年江苏省徐州市中考数学试卷与答案,共13页。试卷主要包含了选择题,填空題,解答题等内容,欢迎下载使用。
2023年江苏省徐州市中考数学试卷: 这是一份2023年江苏省徐州市中考数学试卷,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021年江苏省徐州市中考数学试卷: 这是一份2021年江苏省徐州市中考数学试卷,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。