开学活动
搜索
    上传资料 赚现金

    7.3 二次函数与一元二次方程、不等式-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练高分突破系列(新高考专用)(原卷版)

    7.3  二次函数与一元二次方程、不等式-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练高分突破系列(新高考专用)(原卷版)第1页
    7.3  二次函数与一元二次方程、不等式-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练高分突破系列(新高考专用)(原卷版)第2页
    7.3  二次函数与一元二次方程、不等式-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练高分突破系列(新高考专用)(原卷版)第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    7.3 二次函数与一元二次方程、不等式-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练高分突破系列(新高考专用)(原卷版)

    展开

    这是一份7.3 二次函数与一元二次方程、不等式-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练高分突破系列(新高考专用)(原卷版),共9页。
    7.3  二次函数与一元二次方程、不等式思维导图  知识点总结  一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δb24acΔ0Δ0Δ0二次函数yax2bxc(a0)的图象 一元二次方程ax2bxc0(a0)的根有两相异实数根x1x2(x1x2) 没有实数根一元二次不等式ax2bxc0(a0)的解集   一元二次不等式ax2bxc0(a0)的解集{x|x1xx2}  由二次函数的图象与一元二次不等式的关系判断不等式恒成立问题的方法 1.一元二次不等式ax2bxc0对任意实数x恒成立2.一元二次不等式ax2bxc0对任意实数x恒成立 典型例题分析考向一   一元二次不等式的解法已知不等式ax2bxc>0的解集是{x|α<x<β}(α>0),则不等式cx2bxa<0的解集是(  )A.  B.C(αβ)  D(α)(β,+)   【变式】(2019·江苏卷)函数y的定义域是________    【方法技巧】 1.解一元二次不等式的一般方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R∅).(3)求:求出对应的一元二次方程的根.(4)写:利用大于取两边,小于取中间写出不等式的解集.2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【变式】(2019·天津卷)xR使不等式3x2x2<0成立的x的取值范围为________    .   考向二 一元二次不等式的恒成立问题(在实数R上恒成立)若不等式2kx2kx<0对一切实数x都成立,则k的取值范围为________   【方法技巧】R上的恒成立问题解决此类问题常利用一元二次不等式在R上恒成立的条件,注意如果不等式ax2bxc0恒成立,不要忽略a0时的情况.【变式】若不等式x2kx1>0对任意实数x都成立,则实数k的取值范围是___________   考向三 一元二次不等式的恒成立问题(在给定区间上恒成立)【例】若对任意的x∈[1,2],都有x22xa0(a为常数)a的取值范围是(  )A(∞,3] B(∞,0]C.[1) D(∞,1]   【方法技巧】 在给定区间上的恒成立问题(1)f(x)0在集合A中恒成立,即集合A是不等式f(x)0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围)(2)转化为函数值域问题,即已知函数f(x)的值域为[mn],则f(x)≥a恒成立f(x)mina,即maf(x)≤a恒成立f(x)maxa,即na.  考向四   一元二次不等式的恒成立问题(给定参数范围的恒成立问题)【例】(2019·天津高考)x∈R,使不等式3x2x2<0成立的x的取值范围为________   【变式】m为实数,若函数f(x)x2mx2在区间(2)上是减函数,对任意的x1x2,总有|f(x1)f(x2)|4,则m的取值范围为(  )A[4,6]  B(4,6)C(4,6]  D[4,6)   【方法技巧】给定参数范围求x的范围的恒成立问题1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.  基础题型训练 一、单选题1.一元二次不等式的解集是(    A B C D2.不等式的解集为,则函数y的图象为(    A BC D3.若不等式对任意实数x都成立,则实数k的取值范围是(   A B C D4.已知,若,满足,则(    A BC D5.不等式的解集A B C D6.若关于的方程有两个不同的正根,则实数的取值范围是(    A B C D 二、多选题7.下列四个不等式中解集为R的是(    A.-x2x1≥0 Bx22 x0C.-2x23x40 Dx26x1008.若方程在区间上有实数根,则实数的取值可以是(    A B C D1 三、填空题9.若方程有唯一的实数根3,则不等式的解集为______10.函数的最大值为___________11.若函数在区间上是单调减函数,则实数a的取值范围是__________.12.当x∈(1,2)时,不等式x2mx40恒成立,则m的取值范围是______ 四、解答题13.解不等式:14.已知不等式的解集为(1)的值;(2)解不等式15.已知全集,集合.1)当时,求的取值范围;2)当时,求的取值范围.16.已知不等式与不等式的解集相同.1)求2)若,且,求的最小值.   提升题型训练一、单选题1.已知集合012,则    A B1C0 D012.已知函数,若对于任意,均有成立,则实数的取值范围是(    A B C D3.设一元二次不等式的解集为,则的值为(    A B C D4.已知是不全为零的实数,则关于的方程的根的情况为.A.有两个负根 B.有两个正根C.有两个异号的实根 D.无实根5.函数在区间上是减函数,那么实数a的取值范围是(    A B C D6.关于的不等式的解集中,恰有3个整数,则的取值范围是(    A BC D 二、多选题7.若方程在区间上有实数根,则实数的取值可以是(    A B C D18.若不等式的解集是的子集,则实数的取值可以是(    A B C D 三、填空题9.函数的最大值为______.10.定义新运算,满足对任意的,有.若对恒成立,则实数m的取值范围是______11.已知,则的取值范围为__________.12.若关于x的一元二次方程的两根分别是,则式子的值是______ 四、解答题13.已知方程的两根为,求下列各式的值:(1)(2)(3).14.已知,其中.1)若,且为真,求实数的取值范围;2)若的必要不充分条件,求实数的取值范围.15.若不等式的解集是.1)求不等式的解集;2)已知二次不等式的解集为,求关于的不等式的解集.16.已知关于x的不等式:11)当a=1时,解该不等式;2)当a0时,解该不等式. 

    相关试卷

    7.3 二次函数与一元二次方程、不等式-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练高分突破系列(新高考专用)(解析版):

    这是一份7.3 二次函数与一元二次方程、不等式-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练高分突破系列(新高考专用)(解析版),共22页。试卷主要包含了故选A.等内容,欢迎下载使用。

    高中数学苏教版 (2019)必修 第一册第3章 不等式3.1 不等式的基本性质优秀课后练习题:

    这是一份高中数学苏教版 (2019)必修 第一册第3章 不等式3.1 不等式的基本性质优秀课后练习题,共28页。

    3.6利用导数研究不等式恒(能)成立问题(精讲)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区):

    这是一份3.6利用导数研究不等式恒(能)成立问题(精讲)-【题型·技巧培优系列】最新高考数学大一轮复习精讲精练(新高考地区),文件包含36利用导数研究不等式恒能成立问题精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区解析版docx、36利用导数研究不等式恒能成立问题精讲-题型·技巧培优系列最新高考数学大一轮复习精讲精练新高考地区原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map