- 专题6.4 动角问题专项训练(40道)-2022-2023学年七年级数学上册举一反三系列(苏科版) 试卷 2 次下载
- 专题6.5 线段与角中的常见思想方法的应用【八大题型】-2022-2023学年七年级数学上册举一反三系列(苏科版) 试卷 2 次下载
- 专题7.1 期中期末专项复习之有理数十六大必考点-2022-2023学年七年级数学上册举一反三系列(苏科版) 试卷 1 次下载
- 专题7.2 期中期末专项复习之代数式十七大必考点-2022-2023学年七年级数学上册举一反三系列(苏科版) 试卷 1 次下载
- 专题7.3 期中期末专项复习之一元一次方程十六大必考点-2022-2023学年七年级数学上册举一反三系列(苏科版) 试卷 2 次下载
专题6.6 平面图形的认识(一)章末题型过关卷-2022-2023学年七年级数学上册举一反三系列(苏科版)
展开第6章 平面图形的认识(一)章末题型过关卷
【苏科版】
考试时间:60分钟;满分:100分
姓名:___________班级:___________考号:___________
考卷信息:
本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)(2022·山东烟台·期中)如图,点A,B在直线l上,下列说法错误的是( )
A.线段和线段是同一条线段
B.直线和直线是同一条直线
C.图中以点A为端点的射线有两条
D.射线和射线是同一条射线
2.(3分)(2022··九年级期中)在的内部任取一点C,作射线OC,则一定有( )
A. B. C. D.
3.(3分)(2022·浙江·九年级专题练习)若∠A=30°18′,∠B=30°15′30″,∠C=30.25°,则这三个角的大小关系正确的是( )
A.∠C>∠A>∠B B.∠C>∠B>∠A
C.∠A>∠C>∠B D.∠A>∠B>∠C
4.(3分)(2022·全国·七年级课时练习)已知平面上A,B,C三点,过每两点画一条直线,那么直线的条数有( )
A.3条 B.1条 C.1条或3条 D.0条
5.(3分)(2022·山东烟台·期中)如图线段,点在射线上从点开始,以每秒的速度沿着射线的方向匀速运动,则时,运动时间为( )
A.秒 B.3秒 C.秒或秒 D.3秒或6秒
6.(3分)(2022·江西景德镇·七年级期中)已知,互补,那么与之间的关系是( )
A.和为45° B.差为45° C.互余 D.差为90°
7.(3分)(2022·浙江省义乌市稠江中学七年级阶段练习)如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2,若点E在直线AD上,且EA=1,求BE的长为( )
A.4 B.6或8 C.6 D.8
8.(3分)(2022·山东·泰安市泰山区大津口中学七年级阶段练习)4点10分,时针与分针所夹的小于平角的角为( )
A.55° B.65°
C.70° D.以上结论都不对
9.(3分)(2022·全国·七年级课时练习)如图,直线与相交于点,一直角三角尺的直角顶点与点重合,平分,现将三角尺以每秒的速度绕点顺时针旋转,同时直线也以每秒的速度绕点顺时针旋转,设运动时间为秒(),当平分时,的值为( )
A. B. C.或 D.或
10.(3分)(2022·全国·七年级课时练习)如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点;第二次操作:分别取线段和的中点;第三次操作:分别取线段和的中点;……连续这样操作10次,则每次的两个中点所形成的所有线段之和( )
A. B. C. D.
二.填空题(共6小题,满分18分,每小题3分)
11.(3分)(2022·四川·三台博强蜀东外国语学校七年级阶段练习)已知直线AB,CD相交于点O,OE平分∠AOD,|∠BOD|=30°,∠COE的度数=____.
12.(3分)(2022·黑龙江·哈尔滨市萧红中学校七年级阶段练习)如图直线与直线相交于点,平分,,则的度数为___________°.
13.(3分)(2022·湖北鄂州·七年级期末)如图,∠BOD=45°,∠AOE=90°,那么图中小于或等于90°的角有____个,它们的度数之和是_____.
14.(3分)(2022·广东·龙门县平陵中学七年级期中)把一根绳子对折成一条线段AB,在线段AB上取一点P,使AP:PB=1:3,将绳子从点P处剪断,若剪断后的三段绳子中最长的一段为18cm,则三段绳子中最短的一段的长为 _____.
15.(3分)(2022·河南平顶山·七年级期末)直线l上的三个点A、B、C,若满足BCAB,则称点C是点A关于点B的“半距点”.如图1,BCAB,此时点C就是点A关于点B的一个“半距点”.如图2若M、N、P三个点在同一条直线m上,且点P是点M关于点N的“半距点”,MN=6cm.则MP=________cm.
16.(3分)(2022·全国·七年级课时练习)如图,已知为直线上一点,平分,则的度数为 ______. (用含的式子表示)
三.解答题(共7小题,满分52分)
17.(6分)(2022·黑龙江·哈尔滨市第十七中学校七年级阶段练习)如图,已知直线l和直线外三点A,B,C,按下列要求画图:
(1)画射线;
(2)连接;
(3)在直线l上确定点E,使得最小.
18.(6分)(2022·贵州·遵义市播州区新蓝学校七年级阶段练习)如图,已知B、C在线段AD上.
(1)图中共有_____条线段;
(2)若AB=CD.
①比较线段的大小:AC_____BD(填:“>”、“=”或“<”);
②若BD=4AB,BC=12cm,求AD的长.
19.(8分)(2022·河南安阳·七年级期末)(1)如图,若点A,O,B在同一条直线上,,OD是∠AOC内部的一条射线,,射线OE平分∠AOC.求∠DOE的度数;
(2)若点A,O,B不在同一条直线上,射线OC是∠AOB(∠AOB是小于平角的角)内部的一条射线.,,射线OE平分∠AOC.当时,则∠DOE的度数为 .(用含的代数式表示)
20.(8分)(2022·山西临汾·七年级阶段练习)综合与探究
已知线段,P,Q是线段上的两点(点P在点Q的左边),且.
(1)如图1,若点C在线段上,且,当P为的中点时,求的长.
(2)若M为线段的中点,N为线段的中点.
①如图2,当线段在线段上时,求线段的长;
②当线段在线段的延长线上时(点P,Q都在的延长线上),猜想线段的长是否发生变化?请说明理由.
21.(8分)(2022·全国·七年级课时练习)如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一块直角三角板DOE直角顶点放在点O处.
(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=____________°;
(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠BOD、∠COE的度数;
(3)如图3,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.
22.(8分)(2022·全国·七年级课时练习)已知:如图,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B同时出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)
(1)若AM=4cm,当点C、D运动了2s,此时AC=_____,DM=_____;(直接填空)
(2)若点C、D运动时,总有MD=3AC,
①求线段AM的值,
②若N是直线AB上一点,且AN-BN=MN,求的值
23.(8分)(2022·云南曲靖·七年级期末)直线相交于点O,于点O,作射线,且在的内部.
(1)①当在如图1所示位置时,若,求的度数;
②当在如图2所示位置时,若平分,证明:平分;
(2)若,请直接写出与之间的数量关系.