2021_2023年高考数学真题分类汇编专题13不等式选择题
展开专题13不等式(选择题)
近三年高考真题
知识点1:不等式大小判断问题
1.(2022•上海)若实数、满足,下列不等式中恒成立的是
A. B. C. D.
【答案】
【解析】因为,所以,当且仅当时取等号,
又,所以,故正确,错误,
,当且仅当,即时取等号,故错误,
故选:.
2.(2022•上海)若,则下列不等式恒成立的是
A. B. C. D.
【答案】
【解析】对于,令,,,,满足,但,故错误,
对于,,即,,
由不等式的可加性可得,,故正确,
对于,令,,,,满足,但,故错误,
对于,令,,,,满足,但,故错误.
故选:.
3.(2021•上海)已知两两不相等的,,,,,,同时满足①,,;②;③,以下哪个选项恒成立
A. B. C. D.
【答案】
【解析】设,
,,,
根据题意,应该有,
且,
则有,
则,
因为,
所以,
所以项正确,错误.
,而上面已证,
因为不知道的正负,
所以该式子的正负无法恒定.
故选:.
知识点2:利用基本不等式求最值
4.(2021•乙卷(文))下列函数中最小值为4的是
A. B. C. D.
【答案】
【解析】对于,,
所以函数的最小值为3,故选项错误;
对于,因为,所以,
当且仅当,即时取等号,
因为,所以等号取不到,
所以,故选项错误;
对于,因为,所以,
当且仅当,即时取等号,
所以函数的最小值为4,故选项正确;
对于,因为当时,,
所以函数的最小值不是4,故选项错误.
故选:.
5.(多选题)(2022•新高考Ⅱ)若,满足,则
A. B. C. D.
【答案】
【解析】方法一:由可得,,
令,则,
,,故错,对,
,,
故对,错,
方法二:对于,,由可得,,即,
,,故错,对,
对于,,由得,,
,故对;
,,
,故错误.
故选:.
2021_2023年高考数学真题分类汇编专题05立体几何选择题理: 这是一份2021_2023年高考数学真题分类汇编专题05立体几何选择题理,共28页。试卷主要包含了某几何体的三视图如图所示(单位等内容,欢迎下载使用。
2021_2023年高考数学真题分类汇编专题17计数原理选择题: 这是一份2021_2023年高考数学真题分类汇编专题17计数原理选择题,共3页。试卷主要包含了的展开式中,的系数是,若,则等内容,欢迎下载使用。
2021_2023年高考数学真题分类汇编专题14概率与统计选择题文: 这是一份2021_2023年高考数学真题分类汇编专题14概率与统计选择题文,共9页。