所属成套资源:【满分秘诀】专题(考点突破)2022-2023学年八年级数学上册期末满分直通
- 【满分秘诀】专题02 三角形(满分突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 2 次下载
- 【满分秘诀】专题03 全等三角形(考点突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 4 次下载
- 【满分秘诀】专题05 轴对称(考点突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 4 次下载
- 【满分秘诀】专题06 轴对称(满分突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 3 次下载
- 【满分秘诀】专题07 整式乘法运算(考点突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 4 次下载
人教版八年级上册12.1 全等三角形练习题
展开
这是一份人教版八年级上册12.1 全等三角形练习题,文件包含八年级数学上册满分秘诀专题04全等三角形满分突破原卷版docx、八年级数学上册满分秘诀专题04全等三角形满分突破解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
【满分秘诀】专题04 全等三角形(满分突破) 1.(2022春•金沙县期末)如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为( )A.4:3:2 B.1:2:3 C.2:3:4 D.3:4:52.(2022春•盐湖区期末)如图,已知线段AB=40米,MA⊥AB于点A,MA=20米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为( )A.8 B.8或10 C.10 D.6或103.(2022春•来凤县期末)如图,在正方形OABC中,O是坐标原点,点A的坐标为(1,),则点C的坐标是( )A.(﹣,1) B.(﹣1,) C.(﹣,1) D.(﹣,﹣1)4.(2022春•雁塔区校级期末)在学习完“探索三角形全等的条件”一节后,一同学总结出很多全等三角形的模型,他设计了以下问题给同桌解决:如图,做一个“U”字形框架PABQ,其中AB=42cm,AP,BQ足够长,PA⊥AB于A,QB⊥AB于点B,点M从B出发向A运动,同时点N从B出发向Q运动,使M,N运动的速度之比3:4,当两点运动到某一瞬间同时停止,此时在射线AP上取点C,使△ACM与△BMN全等,则线段AC的长为( )A.18cm B.24cm C.18cm或28cm D.18cm或24cm5.(2021秋•肥西县期末)一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是( )A.x>5 B.x<7 C.4<x<14 D.2<x<76.(2022春•龙华区期末)如图,在△ABD中,AD=AB,∠DAB=90°,在△ACE中,AC=AE,∠EAC=90°,CD,BE相交于点F,有下列四个结论:①∠BDC=∠BEC;②FA平分∠DFE;③DC⊥BE;④DC=BE.其中,正确的结论有( )A.①②③④ B.①③④ C.②③ D.②③④7.(2021秋•滦州市期末)如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①③ B.①②③ C.②③④ D.①②④8.(2021秋•南宁期末)等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为 ;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是 ;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值. 9.(2022春•周村区期末)如图,已知AE⊥AB,AF⊥AC.AE=AB,AF=AC,BF与CE相交于点M.求证:(1)EC=BF;(2)EC⊥BF;(3)连接AM,求证:MA平分∠EMF. 10.(2021秋•济南期末)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是 DE=BD+CE ;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由. 11.(2021秋•黔西南州期末)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离. 12.(2021秋•叙州区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由. 13.(2021秋•南宁期末)如图1,分别以△ABC的两边AB,AC为边作△ABD和△ACE,使得AB=AD,AE=AC,∠DAB=∠EAC.(1)求证:BE=CD;(2)过点A分别作AF⊥CD于点F,AG⊥BE于点G,①如图2,连接FG,请判断△AFG的形状,并说明理由;②如图3,若CD与BE相交于点H,且∠DAB=∠EAC=60°,试猜想AH,CH,HE之间的数量关系,并证明.
相关试卷
这是一份期末冲刺测试卷(二)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版),文件包含八年级数学上册期末冲刺测试卷二原卷版docx、八年级数学上册期末冲刺测试卷二解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份期末冲刺测试卷(一)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版),文件包含八年级数学上册期末冲刺测试卷一原卷版docx、八年级数学上册期末冲刺测试卷一解析版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份【满分秘诀】专题08 整式乘法运算(满分突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版),文件包含八年级数学上册满分秘诀专题08整式乘法运算满分突破原卷版docx、八年级数学上册满分秘诀专题08整式乘法运算满分突破解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。