所属成套资源:【满分秘诀】专题(考点突破)2022-2023学年八年级数学上册期末满分直通
- 【满分秘诀】专题07 整式乘法运算(考点突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 4 次下载
- 【满分秘诀】专题08 整式乘法运算(满分突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 3 次下载
- 【满分秘诀】专题09 分式(考点突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 4 次下载
- 【满分秘诀】专题10 分式(满分突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 3 次下载
- 期末冲刺测试卷(二)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版) 试卷 2 次下载
期末冲刺测试卷(一)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版)
展开
这是一份期末冲刺测试卷(一)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版),文件包含八年级数学上册期末冲刺测试卷一原卷版docx、八年级数学上册期末冲刺测试卷一解析版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
2022-2023学年八年级数学上册期末冲刺测试卷(一)
(考试时间:120分钟 试卷满分:120分)
一、 选择题(本题共12小题,每小题3分,共36分)。
1.下列微信表情图标属于轴对称图形的是( )
A. B. C. D.
【答案】C
【解答】解:A、不是轴对称图形,本选项不合题意;
B、不是轴对称图形,本选项不合题意;
C、是轴对称图形,本选项符合题意;
D、不是轴对称图形,本选项不合题意.
故选:C.
2.据医学研究:新型冠状病毒的直径平均0.000000125米,0.000000125米用科学记数法表示为( )
A.0.125×10﹣6米 B.1.25×10﹣7米
C.125×10﹣10米 D.1.25×10﹣11米
【答案】B
【解答】解:0.000000125=1.25×=1.25×10﹣7,
故选:B.
3.使分式有意义,x应满足的条件是( )
A.x≠1 B.x≠2 C.x≠1或x≠2 D.x≠1且x≠2
【答案】D
【解答】解:根据题意得,(x﹣1)(x﹣2)≠0,
解得x≠1且x≠2.
故选:D.
4.下列多项式中,不能用平方差公式分解的是( )
A.x2﹣y2 B.﹣x2﹣y2 C.4x2﹣y2 D.﹣4+x2
【答案】B
【解答】解:A、x2﹣y2=(x+y)(x﹣y),能用平方差公式分解,故此选项不符合题意;
B、﹣x2﹣y2无法因式分解,不能用平方差公式分解,故此选项符合题意;
C、4x2﹣y2=(2x+y)(2x﹣y),能用平方差公式分解,故此选项不符合题意;
D、﹣4+x2=x2﹣4=(x+2)(x﹣2),能用平方差公式分解,故此选项不符合题意.
故选:B.
5.下列运算正确的是( )
A.a4•a2=a8 B.(a3)2=a5
C.(3a2)2=6a4 D.a5÷a﹣2=a7(a≠0)
【答案】D
【解答】解:A、a4•a2=a6,计算错误,不符合题意;
B、(a3)2=a6,计算错误,不符合题意;
C、(3a2)2=9a4,计算错误,不符合题意;
D、a5÷a﹣2=a7(a≠0),计算正确,符合题意;
故选:D.
6.如图,AB=DE,∠A=∠D,要说明△ABC≌△DEF,需添加的条件不能是( )
A.AB∥DE B.AC∥DF C.AC⊥DE D.AC=DF
【答案】C
【解答】解C:A.由AB∥DE知∠B=∠DEF,结合AB=DE,∠A=∠D可依据“ASA”判定△ABC≌△DEF,此选项不符合题意;
B.由AC∥DF知∠ACB=∠F,结合AB=DE,∠A=∠D可依据“AAS”判定△ABC≌△DEF,此选项不符合题意;
C.由AC⊥DE无法证明△ABC≌△DEF,此选项符合题意;
D.由AC=DF,结合AB=DE,∠A=∠D可依据“SAS”判定△ABC≌△DEF,此选项不符合题意;
故选:C.
7.已知一个多边形的内角和是它的外角和的3倍,则这个多边形是( )
A.九边形 B.八边形 C.七边形 D.六边形
【答案】B
【解答】解:设多边形的边数是n,则(n﹣2)•180=3×360,
解得:n=8,
故选:B.
8.如果把分式中的x,y同时变为原来的4倍,那么该分式的值( )
A.不变 B.变为原来的4倍
C.变为原来的 D.变为原来的
【答案】D
【解答】解:x,y同时变为原来的4倍,
则有==•,
∴该分式的值是原分式值的,
故选:D.
9.如图,为了测量池塘两岸相对的A,B两点之间的距离,小明同学在池塘外取AB的垂线BF上两点C,D,BC=CD,再画出BF的垂线DE,使点E与A,C在同一条直线上,可得△ABC≌△EDC,从而DE=AB.判定△ABC≌△EDC的依据是( )
A.ASA B.SAS C.AAS D.SSS
【答案】A
【解答】解:因为证明在△ABC≌△EDC用到的条件是:BC=CD,∠ABC=∠EDC=90°,∠ACB=∠ECD(对顶角相等),
所以用到的是两角及这两角的夹边对应相等,即ASA这一方法.
故选:A.
10.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是( )
A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2
【答案】C
【解答】解:由题意可得,正方形的边长为(a+b),
故正方形的面积为(a+b)2,
又∵原矩形的面积为4ab,
∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.
故选:C.
11.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有( )个.
A.1 B.2 C.3 D.4
【答案】C
【解答】证明:∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴∠1=∠2,
∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,
∴∠APE=∠C=60°,故①正确
∵BQ⊥AD,
∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,
∴BP=2PQ.故③正确,
∵AC=BC.AE=DC,
∴BD=CE,
∴AE+BD=AE+EC=AC=AB,故④正确,
无法判断BQ=AQ,故②错误,
故选:C.
12.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为( )
A.130° B.120° C.110° D.100°
【答案】B
【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″的长即为△AMN的周长最小值.∵∠DAB=120°,
∴∠AA′M+∠A″=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,
故选:B.
二、 填空题(本题共6题,每小题3分,共18分)。
13.点A(2,3)关于x轴的对称点的坐标是 .
【答案】(2,﹣3)
【解答】解:点A(2,3)关于x轴的对称点的坐标是(2,﹣3).
故答案为:(2,﹣3).
14.计算:
(1)2x2•x3= 2x5 ;
(2)6x3÷2x2= 3x .
【答案】(1)2x5;(2)3x
【解答】解:(1)2x2•x3=2x5;
(2)6x3÷2x2=3x.
故答案为(1)2x5;(2)3x.
15.n边形的内角和与外角和相等,则n= .
【答案】4
【解答】解:根据题意,得
(n﹣2)•180=360,解得n=4.
因而四边形的内角和等于外角和.
16.因式分解:x3﹣4x= .
【答案】x(x+2)(x﹣2)
【解答】解:x3﹣4x
=x(x2﹣4)
=x(x+2)(x﹣2).
故答案为:x(x+2)(x﹣2).
17.已知4x2﹣mx+36是完全平方式,则m的值为 .
【答案】±24
【解答】解:∵4x2﹣mx+36是完全平方式,
∴4x2﹣mx+36=(2x±6)2=4x2±24x+36,
故答案为:±24.
18.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为 .
【答案】10
【解答】解:∵直线m是△ABC中BC边的垂直平分线,
∴BP=CP,
∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,
∴当A、B、P三点共线时,△ACP的周长最小,
∵AB=6,BC=7,AC=4,
∴△ACP的周长6+4=10,
∴△ACP的周长最小值为10,
故答案为10.
三.解答题(本题共8题,19-20题6分,21-23题8分,24-26题10分)。
19.分解因式:
(1)a2b﹣9b;
(2)2x3﹣8x2y+8xy2.
【解答】解:(1)原式=b(a2﹣9)=b(a+3)(a﹣3);
(2)原式=2x(x2﹣4xy+4y2)=2x(x﹣2y)2.
20.解方程:.
【解答】解:方程两边都乘3(x+1),
得:3x﹣2x=3(x+1),
解得:x=﹣,
检验:当x=﹣时,3(x+1)≠0,
∴x=﹣是方程的解,
∴原方程的解为x=﹣.
21.已知:如图,∠ABC,射线BC上一点D.
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.
【解答】解:∵点P到∠ABC两边的距离相等,
∴点P在∠ABC的平分线上;
∵线段BD为等腰△PBD的底边,
∴PB=PD,
∴点P在线段BD的垂直平分线上,
∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,
如图所示:
22.如图.已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.
【解答】证明:在△AOB与△COD中,
,
∴△AOB≌△DOC(AAS),
∴OB=OC,
∴∠OBC=∠OCB.
23.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.某快递中转站平均每天需要分拣10万件快件,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作(每天工作时间为8小时).
【解答】解:设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,
依题意,得:=﹣4,
解得:x=84,
经检验,x=84是原方程的解,且符合题意,
∴100000÷(84×25×8)=5(人)……16000(件),
∴5+1=6(人).
24.如图1是一个宽为a、长为4b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).
(1)观察图2,请你用等式表示(a+b)2,(a﹣b)2,ab之间的数量关系: ;
(2)根据(1)中的结论,如果x+y=5,xy=,求代数式(x﹣y)2的值;
(3)如果(2021﹣m)2+(m﹣2022)2=7,求(2021﹣m)(m﹣2022)的值.
【解答】解:(1)依据题意,由图②可得:
(a+b)2=(a﹣b)2+4ab.
故答案为:(a+b)2=(a﹣b)2+4ab;
(2)由(1)中结论可得,
(x+y)2=(x﹣y)2+4xy,
∴52=(x﹣y)2+4×,
∴(x﹣y)2=16;
(3)∵(2021﹣m)+(m﹣2022)=﹣1,
∴[(2021﹣m)+(m﹣2022)]2=(2021﹣m)2+(m﹣2022)2+2(2021﹣m)(m﹣2022),
∴(﹣1)2=7+2(2021﹣m)(m﹣2022),
∴(2021﹣m)(m﹣2022)=﹣3.
25.第一步:阅读材料,掌握知识.
要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出公因式a,再把它的后两项分成一组,提出公因式b,从而得:
am+an+bm+bn=a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)中又有公因式(m+n),于是可提出(m+n),从而得到(m+n)(a+b),因此有:
am+an+bn+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).
这种方法称为分组法.
第二步:理解知识,尝试填空.
(1)ab﹣ac+bc﹣b2=(ab﹣ac)+(bc﹣b2)=a(b﹣c)﹣b(b﹣c)= (b﹣c)(a﹣b) .
第三步:应用知识,解决问题.
(2)因式分解:x2y﹣4y﹣2x2+8.
第四步:提炼思想,拓展应用.
(3)已知三角形的三边长分别是a、b、c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由.
【解答】解:(1)ab﹣ac+bc﹣b2
=(ab﹣ac)+(bc﹣b2)
=a(b﹣c)﹣b(b﹣c)
=(b﹣c)(a﹣b).
故答案为:(b﹣c)(a﹣b).
(2)x2y﹣4y﹣2x2+8
=(x2y﹣4y)﹣(2x2﹣8)
=y(x2﹣4)﹣2(x2﹣4)
=(y﹣2)(x2﹣4)
=(y﹣2)(x+2)(x﹣2).
(3)这个三角形为等边三角形.
理由如下:
∵a2+2b2+c2=2b(a+c),
∴a2+2b2+c2﹣2ba﹣2bc=0,
∴a2﹣2ab+b2+b2﹣2bc+c2=0,
∴(a﹣b)2+(b﹣c)2=0,
∵(a﹣b)2≥0,(b﹣c)2≥0,
∴a﹣b=0,b﹣c=0,
∴a=b=c,
∴这个三角形是等边三角形.
26.点C是直线上一点,在同一平面内,把一个等腰直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1,垂足为点N.
(1)当直线l2,l3位于点C的异侧时,如图1,线段BN、AM与MN之间的数量关系为 MN=AM+BN (不必说明理由).
(2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN、AM与MN之间的数量关系,并说明理由;
(3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并写出BN、AM、MN之间的数量关系.
【解答】解:(1)∵△ABC是等腰直角三角形,
∴AC=BC,∠BCA=90°,
∵l3⊥l1,
∴∠BNC=∠BCA=90°,
∴∠NBC+∠NCB=∠NCB+∠MCA=90°,
∴∠NBC=∠MCA,
在△NBC和△MCA中,
,
∴△NBC≌△MCA(AAS),
∴BN=CM,CN=AM,
∴MN=CN+CM=AM+BN,
故答案为:MN=AM+BN;
(2)如图2,MN=BN﹣AM,理由如下:
∵l2⊥l1,l3⊥l1,
∴∠BNC=∠CMA=90°,
∴∠ACM+∠CAM=90°,
∵△ABC是等腰直角三角形,
∴AC=BC,∠BCA=90°,
∴∠ACM+∠BCN=90°,
∴∠CAM=∠BCN,
在△CBN和△ACM中,
,
∴△CBN≌△ACM(AAS),
∴BN=CM,CN=AM,
∴MN=CM﹣CN=BN﹣AM;
(3)补全图形,如图3,MN=AM﹣BN,理由如下:
∵l2⊥l1,l3⊥l1,
∴∠BNC=∠CMA=90°,
∴∠ACM+∠CAM=90°,
∵△ABC是等腰直角三角形,
∴AC=BC,∠BCA=90°,
∴∠ACM+∠BCN=90°,
∴∠CAM=∠BCN,
在△CBN和△ACM中,
,
∴△CBN≌△ACM(AAS),
∴BN=CM,CN=AM,
∴MN=CN﹣CM=AM﹣BN.
相关试卷
这是一份期末冲刺测试卷(二)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版),文件包含八年级数学上册期末冲刺测试卷二原卷版docx、八年级数学上册期末冲刺测试卷二解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份【满分秘诀】专题08 整式乘法运算(满分突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版),文件包含八年级数学上册满分秘诀专题08整式乘法运算满分突破原卷版docx、八年级数学上册满分秘诀专题08整式乘法运算满分突破解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份【满分秘诀】专题07 整式乘法运算(考点突破)-【满分秘诀】2022-2023学年八年级数学上册期末满分直通车必练(人教版),文件包含八年级数学上册满分秘诀专题07整式乘法运算考点突破原卷版docx、八年级数学上册满分秘诀专题07整式乘法运算考点突破解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。