终身会员
搜索
    上传资料 赚现金

    1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选择性必修第一册)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选修第一册)(原卷版).docx
    • 解析
      1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选修第一册)(解析版).docx
    1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选修第一册)(原卷版)第1页
    1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选修第一册)(原卷版)第2页
    1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选修第一册)(原卷版)第3页
    1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选修第一册)(解析版)第1页
    1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选修第一册)(解析版)第2页
    1.4.2 用空间向量解决角度问题(第2课时)(分层作业)-高二数学同步备课系列(人教A版选修第一册)(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用第2课时综合训练题

    展开

    这是一份高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用第2课时综合训练题,文件包含142用空间向量解决角度问题第2课时分层作业-高二数学同步备课系列人教A版选修第一册原卷版docx、142用空间向量解决角度问题第2课时分层作业-高二数学同步备课系列人教A版选修第一册解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。


    1.4.2 用空间向量解决角度问题(第2课时)分层作业)

    (夯实基础+能力提升)

    【夯实基础】

    一、概念填空

    1.(2022·全国·高二专题练习)夹角

    1)求异面直线所成的角

    若两异面直线所成角为,它们的方向向量分别为,则有=______ .

    2)求直线和平面所成的角

    设直线的方向向量为,平面的法向量为,直线与平面所成的角为 的角为,则有______=_______.

    3)求二面角

    如图,若AB,平面PABE,则________为二面角的平面角,AEB+APB=180°.若二面角的平面角的大小为,其两个面的法向量分别为,则=______=_______

    4)求平面与平面的夹角

    平面与平面相交,形成四个二面角,把这四个二面角中不大于90°的二面角称为平面与平面的夹角_________=___________.

    二、填空题

    2.(2022·全国·高二课时练习)已知是异面直线,,则所成角的大小为______

    3.(2022·全国·高二课时练习)如果平面的一条斜线与它在这个平面上的射影的方向向量分别是,那么这条斜线与平面所成角的大小为___________.

    4.(2022·全国·高二课时练习)已知两平面的法向量分别为,则两平面所成角的大小为___________.

    5.(2022·江苏·马坝高中高二期中)已知二面角,其中平面的一个法向量,平面的一个法向量,则二面角的大小可能为__________.

    6.(2021·海南·三亚华侨学校高二阶段练习)如图,正方体中,分别是的中点,则_________

    7.(2022·全国·高二)如图,在正三棱柱中,分别是的中点.D是线段上的(包括两个端点)动点,当直线所成角的余弦值为,则线段的长为_______.

    8.(2022·全国·高二课时练习)已知菱形中,,沿对角线折叠之后,使得平面平面,则二面角的余弦值为______

    9.(2021·福建·高二阶段练习)平行六面体的各棱长均相等,与平面交于点E,则的余弦值为___________.

    三、单选题

    10.(2022·福建·厦门外国语学校高二期末)将正方形沿对角线折起,使得平面平面,则异面直线所成角的余弦值为(       

    A B C D

    11.(2022·安徽省亳州市第一中学高二开学考试)若直线的一个方向向量为,直线的一个方向向量为,则直线所成的角为(       

    A30° B150° C60° D120°

    12.(2021·全国·高二课时练习)如图所示,PD垂直于正方形ABCD所在平面,EPB的中点,,若以DADCDP所在直线分别为xyz轴建立空间直角坐标系,则点E的坐标为(       

    A B

    C D

    13.(2021·全国·高二课时练习)在正四棱锥中,分别为的中点,且侧面与底面所成二面角的正切值为,则异面直线所成角的余弦值为(       .

    A B C D

    14.(2021·陕西汉中·高二期末(理))正方体中,EF分别为的中点,则异面直线AEFC所成角的余弦值为(       

    A B C D

    15.(2021·全国·高二单元测试)把正方形沿对角线折起成直二面角,点分别是的中点,是正方形中心,则折起后,的大小为(       .

    A B C D

    四、多选题

    16.(2022·广东·高二期末)给出下列命题,其中不正确的有(       

    A.若,则是钝角

    B.若,则一定共线

    C.若,则为同一线段

    D.非零向量满足都是共面向量,则必共面

    五、解答题

    17.(2022·全国·高二课时练习)如图,在空间直角坐标系中有单位正方体,点E的中点,求直线与直线CE所成角的余弦值.

     

     

     

     

     

    18.(2022·全国·高二课时练习)已知是正方体,求直线与直线所成角的大小.

     

     

     

     

     

    19.(2022·全国·高二专题练习)已知空间四边形各边及对角线长都相等,分别为的中点,求夹角余弦值.

    【能力提升】

    一、单选题

    1.(2023·河南·郑州市第九中学高二阶段练习)如图,在平行六面体 中,以顶点A为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中不正确的是(     

    A

    BBD平面ACC

    C.向量 的夹角是60°

    D.直线BDAC所成角的余弦值为

    二、多选题

    2.(2022·江苏·金沙中学高二阶段练习)在长方体中,,则下列命题为真命题的是(       

    A.若直线与直线所成的角为,则

    B.若经过点的直线与长方体所有棱所成的角相等,且与面交于点,则

    C.若经过点的直线与长方体所有面所成的角都为,则

    D.若经过点的平面与长方体所有面所成的二面角都为,则

    3.(2022·江苏·常州市第一中学高二期中)如图,在菱形ABCD中,AB2BAD60°,将ABD沿对角线BD翻折到PBD位置,连接PC,构成三棱锥. 设二面角,直线和直线所成角为,在翻折过程中,下列说法正确的是(       

    APC与平面BCD所成的最大角为45°

    B.存在某个位置,使得PBCD

    C.当时,的最大值为

    D.存在某个位置,使得B到平面PDC的距离为

    4.(2022·浙江·绍兴市教育教学研究院高二期末)在正方体中,点满足,其中,则(       

    A.当时,平面

    B.当时,三棱锥的体积为定值

    C.当时,的面积为定值

    D.当时,直线所成角的范围为

     

    三、解答题

    5.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥的侧棱两两垂直,且的中点.

    (1)求异面直线所成角的余弦值;

    (2)求二面角的正弦值.

     

     

     

    6.(2022·北京延庆·高二期末)在四棱锥中,平面

    (1)的中点,求证:平面

    (2)求证:平面

    (3)与平面所成角的正弦值.

     

     

     

     

     

    7.(2022·云南·巍山彝族回族自治县第二中学高二阶段练习)如图,在四棱锥中,平面,点分别是棱上的动点.

    (1)是棱的中点,求二面角的大小;

    (2)请判断下列条件:直线与平面所成角的正切值为中哪一个条件可以推断出平面(无需说明理由),并用你的选择证明该结论.

     

     

     

     

    8.(2022·江苏·南通市通州区石港中学高二阶段练习)如图,在四面体中,为等边三角形,点分别为棱的中点,且.

    (1)证明:

    (2)若二面角的大小为,求二面角的余弦值.

     

     

     

     

     

     

    9.(2021·黑龙江黑河·高二阶段练习)如图所示,在四棱锥中,平面平面,又中点

    (1)证明:平面

    (2)求平面与平面所成的锐二面角的余弦值.

     

     

     

     

    10.(2021·黑龙江黑河·高二阶段练习)如图所示,在直四棱柱中,

    (1)证明:

    (2)求直线与平面所成角的正弦值.

     

     

     

     

    11.(2022·广东广州·高二期末)在四棱锥中,已知侧面为正三角形,底面为直角梯形,,点MN分别在线段上,且

    (1)求证:平面

    (2)设二面角大小为,若,求直线和平面所成角的正弦值.

     

     

     

     

    12.(2022·广东湛江·高二期末)如图,在三棱柱中,平面,且为线段的中点,连接.

    (1)证明:

    (2)到直线的距离为,求平面与平面夹角的余弦值.


     

    相关试卷

    数学人教A版 (2019)1.4 空间向量的应用第1课时当堂检测题:

    这是一份数学人教A版 (2019)1.4 空间向量的应用第1课时当堂检测题,文件包含142用空间向量解决距离问题第1课时分层作业-高二数学同步备课系列人教A版选修第一册解析版docx、142用空间向量解决距离问题第1课时分层作业-高二数学同步备课系列人教A版选修第一册原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用第1课时同步测试题:

    这是一份高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用第1课时同步测试题,文件包含142用空间向量解决距离问题第1课时分层作业-高二数学同步备课系列人教A版选修第一册解析版docx、142用空间向量解决距离问题第1课时分层作业-高二数学同步备课系列人教A版选修第一册原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.4 空间向量的应用第3课时同步测试题:

    这是一份高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.4 空间向量的应用第3课时同步测试题,文件包含142用空间向量解决距离夹角的应用第3课时分层作业-高二数学同步备课系列人教A版选修第一册原卷版docx、142用空间向量解决距离夹角的应用第3课时分层作业-高二数学同步备课系列人教A版选修第一册解析版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map