中考数学一轮复习考点复习专题41 几何问题(2)之综合问题【热点专题】(含解析)
展开专题41 几何问题(2)之综合问题
题型精讲
题型一:材料阅读创新
【例1】(2021·湖北中考真题)问题提出 如图(1),在和中,,,,点在内部,直线与交于点,线段,,之间存在怎样的数量关系?
问题探究 (1)先将问题特殊化.如图(2),当点,重合时,直接写出一个等式,表示,,之间的数量关系;
(2)再探究一般情形.如图(1),当点,不重合时,证明(1)中的结论仍然成立.
问题拓展 如图(3),在和中,,,(是常数),点在内部,直线与交于点,直接写出一个等式,表示线段,,之间的数量关系.
【答案】(1).(2)见解析;问题拓展:.
【分析】
(1)先证明△BCE≌△ACD,得到AF=BE,BF-BE=BF-AF=EF=;
(2)过点作交于点,证明,,是等腰直角三角形即可;利用前面的方法变全等为相似证明即可.
【详解】
问题探究 (1).理由如下:如图(2),
∵∠BCA=∠ECF=90°,
∴∠BCE=∠ACF,
∵BC=AC,EC=CF,
△BCE≌△ACF,
∴BE=AF,
∴BF-BE=BF-AF=EF=;
(2)证明:过点作交于点,则,
∴.
∵,
∴.
又∵,,
∴,
∴.
∴.
∴,,
∴是等腰直角三角形.
∴.
∴.
问题拓展 .理由如下:
∵∠BCA=∠ECD=90°,
∴∠BCE=∠ACD,
∵BC=kAC,EC=kCD,
∴△BCE∽△ACD,
∴∠EBC=∠FAC,
过点作交于点M,则,
∴.
∴△BCM∽△ACF,
∴BM:AF=BC:AC=MC:CF=k,
∴BM=kAF,MC=kCF,
∴BF-BM=MF,MF==
∴BF- kAF =.
【例2】(2021·浙江中考真题)(证明体验)
(1)如图1,为的角平分线,,点E在上,.求证:平分.
(思考探究)
(2)如图2,在(1)的条件下,F为上一点,连结交于点G.若,,,求的长.
(拓展延伸)
(3)如图3,在四边形中,对角线平分,点E在上,.若,求的长.
【答案】(1)见解析;(2);(3)
【分析】
(1)根据SAS证明,进而即可得到结论;
(2)先证明,得,进而即可求解;
(3)在上取一点F,使得,连结,可得,从而得,可得,,最后证明,即可求解.
【详解】
解:(1)∵平分,
∴,
∵,
∴,
∴,
∴,
∴,即平分;
(2)∵,
∴,
∵,
∴,
∴.
∵,
∴.
∵,
∴;
(3)如图,在上取一点F,使得,连结.
∵平分,
∴
∵,
∴,
∴.
∵,
∴.
∵,
∴,
∴.
∵,
∴.
∵,
又∵,
∴
∴,
∴,
∴.
题型二:定义材料阅读
【例3】(2020•北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如
下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为
线段AB到⊙O的“平移距离”.
(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是 ;在点P1,P2,P3,P4中,连接点A与点 的线段的长度等于线段AB到⊙O的“平移距离”;
(2)若点A,B都在直线yx+2上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;
(3)若点A的坐标为(2,),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.
【分析】(1)根据平移的性质,以及线段AB到⊙O的“平移距离”的定义判断即可.
(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线yx+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),过点E作EH⊥MN于H,解直角三角形求出EH即可判断.
(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′和等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,点A′与M重合时,AA′的值最小,当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.
解直角三角形求出AA′即可.
【解析】(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2∥P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O的“平移距离”.
故答案为:P1P2∥P3P4,P3.
(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,
设直线yx+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),
过点E作EH⊥MN于H,
∵OM=2,ON=2,
∴tan∠NMO,
∴∠NMO=60°,
∴EH=EM•sin60°,
观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为.
(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,
以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′,等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,
当点A′与M重合时,AA′的值最小,最小值=OA﹣OM1,
当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.
由题意A′H,AH3,
∴AA′的最大值,
∴d2.
题型三:操作材料阅读
【例4】(2021·吉林中考真题)实践与探究
操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则 度.
操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则 度.
在图②中,运用以上操作所得结论,解答下列问题:
(1)设AM与NF的交点为点P.求证:.
(2)若,则线段AP的长为 .
【答案】操作一:45°,操作二:60°;(1)证明见解析;(2)
【分析】
操作一:直接利用折叠的性质,得出两组全等三角形,从而得出,,从而得出∠EAF的值;
操作二:根据折叠的性质得出 ,从而得出,即可求得的度数;
(1)首先利用 ,得出 ,则,从而得出△ANF为等腰直角三角形,即可证得;
(2)利用三角函数或者勾股定理求出BE的长,则,设DF=x,那么FC=,在Rt△EFC中,利用勾股定理得出DF的长,也就是MF的长,即可求得EF的长,进而可得结果.
【详解】
操作一:45°,证明如下:
∵折叠得到 , 折叠得到 ,
∴ ,
∴ ,
∴
,
故填:45°;
操作二:60°,证明如下:
∵,
∴ ,
又∵沿着EF折叠得到 ,
∴,
∴ ,
∴ ,
故填:60°;
(1)证明:
由上述证明得,,
∴ ,
∵四边形ABCD为正方形,
∴∠C=∠D=90°,
∴ ,,
又∵ ,
∴,
在和中,
∵ ,
∴ ,
∴ ,
∴ ,
∴ ,
∴为等腰直角三角形,
即AN=NF,
在和中:
∵
∴
(2)由题可知是直角三角形,,
∴ ,
解得BE=1,
∴BE=EM=1,,
设DF=x,则MF=x,CF=,
在Rt△CEF中,
,
解得x=,
则,
∵
∴AP=EF=.
【例5】(2021·青海中考真题)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作等大小的角,可以采用如下方法:
操作感知:
第一步:对折矩形纸片,使与重合,得到折痕,把纸片展开(如图13-1).
第二步:再一次折叠纸片,使点落在上,并使折痕经过点,得到折痕,同时得到线段(如图13-2).
猜想论证:
(1)若延长交于点,如图13-3所示,试判定的形状,并证明你的结论.
拓展探究:
(2)在图13-3中,若,当满足什么关系时,才能在矩形纸片中剪出符(1)中的等边三角形?
【答案】(1)是等边三角形,理由见解析;(2),理由见解析
【分析】
(1)连接,由折叠性质可得是等边三角形, ,,然后可得到 ,即可判定 是等边三角形.
(2)由折叠可知,由(1)可知,利用 的三角函数即可求得.
【详解】
(1)解:是等边三角形,
证明如下:
连接.
由折叠可知:,垂直平分.
∴,
∴,
∴为等边三角形,
∴,
∴,
∵,,
∴,
∴,
∴是等边三角形.
(2)解:方法一:
要在矩形纸片上剪出等边,则,
在中,,,
∴,
∵,
∴,即,
当或()时,在矩形纸片上能剪出这样的等边.
方法二:
要在矩形纸片上剪出等边,则,
在中,,,
设,则,
∴,即,得,
∴,
∵,
∴,即,
当(或)时,在矩形纸片上能剪出这样的等边.
提分作业
1.(2021·山西中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在中,,垂足为,为的中点,连接,,试猜想与的数量关系,并加以证明;
独立思考:(1)请解答老师提出的问题;
实践探究:(2)希望小组受此问题的启发,将沿着(为的中点)所在直线折叠,如图②,点的对应点为,连接并延长交于点,请判断与的数量关系,并加以证明;
问题解决:(3)智慧小组突发奇想,将沿过点的直线折叠,如图③,点A的对应点为,使于点,折痕交于点,连接,交于点.该小组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果.
【答案】(1);见解析;(2),见解析;(3).
【分析】
(1)如图,分别延长,相交于点P,根据平行四边形的性质可得,根据平行线的性质可得,,利用AAS可证明△PDF≌△BCF,根据全等三角形的性质可得,根据直角三角形斜边中线的性质可得,即可得;
(2)根据折叠性质可得∠CFB=∠C′FB=∠CFC′,FC=FC′,可得FD=FC′,根据等腰三角形的性质可得∠FDC′=∠FC′D,根据三角形外角性质可得∠CFC′=∠FDC′+∠FC′D,即可得出∠C′FB=∠FC′D,可得DG//FB,即可证明四边形DGBF是平行四边形,可得DF=BG=,可得AG=BG;
(3)如图,过点M作MQ⊥A′B于Q,根据平行四边形的面积可求出BH的长,根据折叠的性质可得A′B=AB,∠A=∠A′,∠ABM=∠MBH,根据可得A′B⊥AB,即可证明△MBQ是等腰直角三角形,可得MQ=BQ,根据平行四边形的性质可得∠A=∠C,即可得∠A′=∠C,进而可证明△A′NH∽△CBH,根据相似三角形的性质可得A′H、NH的长,根据NH//MQ可得△A′NH∽△A′MQ,根据相似三角形的性质可求出MQ的长,根据S阴=S△A′MB-S△A′NH即可得答案.
【详解】
(1).
如图,分别延长,相交于点P,
∵四边形是平行四边形,
∴,
∴,,
∵为的中点,
∴,
在△PDF和△BCF中,,
∴△PDF≌△BCF,
∴,即为的中点,
∴,
∵,
∴,
∴,
∴.
(2).
∵将沿着所在直线折叠,点的对应点为,
∴∠CFB=∠C′FB=∠CFC′,,
∵为的中点,
∴,
∴,
∴∠FDC′=∠FC′D,
∵=∠FDC′+∠FC′D,
∴,
∴∠FC′D=∠C′FB,
∴,
∵四边形为平行四边形,
∴,DC=AB,
∴四边形为平行四边形,
∴,
∴,
∴.
(3)如图,过点M作MQ⊥A′B于Q,
∵的面积为20,边长,于点,
∴BH=50÷5=4,
∴CH=,A′H=A′B-BH=1,
∵将沿过点的直线折叠,点A的对应点为,
∴A′B=AB,∠A=∠A′,∠ABM=∠MBH,
∵于点,AB//CD,
∴,
∴∠MBH=45°,
∴△MBQ是等腰直角三角形,
∴MQ=BQ,
∵四边形ABCD是平行四边形,
∴∠A=∠C,
∴∠A′=∠C,
∵∠A′HN=∠CHB,
∴△A′NH∽△CBH,
∴,即,
解得:NH=2,
∵,MQ⊥A′B,
∴NH//MQ,
∴△A′NH∽△A′MQ,
∴,即,
解得:MQ=,
∴S阴=S△A′MB-S△A′NH=A′B·MQ-A′H·NH=×5×-×1×2=.
2.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形绕点顺时针旋转,得到矩形
[探究1]如图1,当时,点恰好在延长线上.若,求BC的长.
[探究2]如图2,连结,过点作交于点.线段与相等吗?请说明理由.
[探究3]在探究2的条件下,射线分别交,于点,(如图3),,存在一定的数量关系,并加以证明.
【答案】[探究1];[探究2],证明见解析;[探究3],证明见解析
【分析】
[探究1] 设,根据旋转和矩形的性质得出,从而得出,得出比例式,列出方程解方程即可;
[探究2] 先利用SAS得出,得出,,再结合已知条件得出,即可得出;
[探究3] 连结,先利用SSS得出,从而证得,再利用两角对应相等得出,得出即可得出结论.
【详解】
[探究1]如图1,
设.
∵矩形绕点顺时针旋转得到矩形,
∴点,,在同一直线上.
∴,,
∴.
∵,
∴.
又∵点在延长线上,
∴,
∴,∴.
解得,(不合题意,舍去)
∴.
[探究2] .
证明:如图2,连结.
∵,
∴.
∵,,,
∴.
∴,,
∵,,
∴,
∴.
[探究3]关系式为.
证明:如图3,连结.
∵,,,
∴.
∴,
∵,
,
∴,
∴.
在与中,
,,
∴,
∴,
∴.
∴.
3.(2020·山东中考真题)在等腰△ABC中,AC=BC,是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
(1)当∠CAB=45°时.
①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是 .线段BE与线段CF的数量关系是 ;
②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
思路二:取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.
(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.
【答案】(1)①,;②仍然成立,证明见解析;(2),理由见解析.
【分析】
(1)①如图1中,连接BE,设DE交AB于T.首先证明再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°得到,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.
(2)结论:BE=.如图3中,取AB的中点T,连接CT,FT.证明,可得结论.
【详解】
解:(1)①如图1中,连接BE,设DE交AB于T.
∵CA=CB,∠CAB=45°,
∴∠CAB=∠ABC=45°,
∴∠ACB=90°,
∵∠ADE=∠ACB=45°,∠DAE=90°,
∴∠ADE=∠AED=45°,
∴AD=AE,
∴AT⊥DE,DT=ET,
∴AB垂直平分DE,
∴BD=BE,
∵∠BCD=90°,DF=FB,
∴CF=BD,
∴CF=BE.
故答案为:∠EAB=∠ABC,CF=BE.
②结论不变.
解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.
∵∠ACB=90°,CA=CB,AM=BM,
∴CM⊥AB,CM=BM=AM,
由①得:
设AD=AE=y.FM=x,DM=a,
点F是BD的中点,
则DF=FB=a+x,
∵AM=BM,
∴y+a=a+2x,
∴y=2x,即AD=2FM,
∵AM=BM,EN=BN,
∴AE=2MN,MN∥AE,
∴MN=FM,∠BMN=∠EAB=90°,
∴∠CMF=∠BMN=90°,
∴(SAS),
∴CF=BN,
∵BE=2BN,
∴CF=BE.
解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到,连接DT,GT,BG.
∵AD=AE,∠EAD=90°,EG=DG,
∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,
∵∠CAB=45°,
∴∠CAG=90°,
∴AC⊥AG,
∴AC∥DE,
∵∠ACB=∠CBT=90°,
∴AC∥BT∥,
∵AG=BT,
∴DG=BT=EG,
∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,
∴BD与GT互相平分,
∵点F是BD的中点,
∴BD与GT交于点F,
∴GF=FT,
由旋转可得;
是等腰直角三角形,
∴CF=FG=FT,
∴CF=BE.
(2)结论:BE=.
理由:如图3中,取AB的中点T,连接CT,FT.
∵CA=CB,
∴∠CAB=∠CBA=30°,∠ACB=120°,
∵AT=TB,
∴CT⊥AB,
∴AT=,
∴AB=,
∵DF=FB,AT=TB,
∴TF∥AD,AD=2FT,
∴∠FTB=∠CAB=30°,
∵∠CTB=∠DAE=90°,
∴∠CTF=∠BAE=60°,
∵∠ADE=∠ACB=60°,
∴AE=AD=FT,
∴,
∴,
∴,
∴.
4.(2021·浙江中考真题)(推理)
如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.
(1)求证:.
(运用)
(2)如图2,在(推理)条件下,延长BF交AD于点H.若,,求线段DE的长.
(拓展)
(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,两点,若,,求的值(用含k的代数式表示).
【答案】(1)见解析;(2);(3)或
【分析】
(1)根据ASA证明;
(2)由(1)得,由折叠得,进一步证明,由勾股定理得,代入相关数据求解即可;
(3)如图,连结HE,分点H在D点左边和点在点右边两种情况,利用相似三角形的判定与性质得出DE的长,再由勾股定理得,代入相关数据求解即可.
【详解】
(1)如图,由折叠得到,
,
.
又四边形ABCD是正方形,
,
,
,
又 正方形
,
.
(2)如图,连接,
由(1)得,
,
由折叠得,,
.
四边形是正方形,
,
,
又,
,
.
,,
,.
,
,
(舍去).
(3)如图,连结HE,
由已知可设,,可令,
①当点H在D点左边时,如图,
同(2)可得,,
,
由折叠得,
,
又,
,
,
又,
,
,
,
,
,
.
,
,
,
(舍去).
②当点在点右边时,如图,
同理得,,
同理可得,
可得,,
,
,
(舍去).
中考数学一轮复习考点复习专题41 几何问题(1)之动点问题【热点专题】(含解析): 这是一份中考数学一轮复习考点复习专题41 几何问题(1)之动点问题【热点专题】(含解析),共35页。
中考数学一轮复习考点复习专题40 几何最值之隐形圆问题【热点专题】(含解析): 这是一份中考数学一轮复习考点复习专题40 几何最值之隐形圆问题【热点专题】(含解析),共16页。
中考数学一轮复习考点复习专题38 几何最值之胡不归问题【热点专题】(含解析): 这是一份中考数学一轮复习考点复习专题38 几何最值之胡不归问题【热点专题】(含解析),共19页。