搜索
    上传资料 赚现金
    (通用版)中考数学总复习考点51 勾股定理的多种证明方法(含解析) 试卷
    立即下载
    加入资料篮
    (通用版)中考数学总复习考点51  勾股定理的多种证明方法(含解析) 试卷01
    (通用版)中考数学总复习考点51  勾股定理的多种证明方法(含解析) 试卷02
    (通用版)中考数学总复习考点51  勾股定理的多种证明方法(含解析) 试卷03
    还剩17页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (通用版)中考数学总复习考点51 勾股定理的多种证明方法(含解析)

    展开
    这是一份(通用版)中考数学总复习考点51 勾股定理的多种证明方法(含解析),共20页。试卷主要包含了代数和几何紧密结合等内容,欢迎下载使用。

    专题51 勾股定理的多种证明方法

    勾股定理具体内容是:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2

    历史上证明勾股定理有很多方法,每种方法都含有科学思维、科学探究的过程,每一种证明方法都利用数学观念,数学知识。每一种方法都体现一名数学家为科学付出的情怀。在证明勾股定理的长河中,参与的人有的是学者,有的是著名的科学家,还有的是政治家,比如总统。通过学习勾股定理的证明,可以品味各种拼图,方法各异,妙趣横生,证明思路别具匠心,极富创新。它们充分运用了几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,深刻体现了形数统一、代数和几何紧密结合、互不可分的独特魅力。

    勾股定理是对社会有重大影响的10大科学发现之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。

    数学故事:在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德(Garfield).他发现附近的一个小石凳上,有两个小孩正在谈论着什么.由于好奇心的驱使,伽菲尔德向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?伽菲尔德答到:是5呀.小男孩又问道:如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?伽菲尔德不加思索地回答到:那斜边的平方一定等于5的平方加上7的平方.小男孩又说道:先生,你能说出其中的道理吗?伽菲尔德一时语塞,无法解释了,心理很不是滋味。

    于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。

    【例题1】如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2

    【答案】见解析。

    【解析】用四个相同的直角三角形(直角边为a、b,斜边为c)按下图拼法。

    根据正方形面积公式得大正方形面积为:

    S=(a+b2………

    这个大正方形的面积等于4个小直角三角形面积之和再加上内部的小正方形的面积,即:

    S= 4×ab+ c2……..

    (a+b2= c2 + 4×ab

    化简可得:a2+b2 = c2

    从而结论得到证明。

    【例题2】用1876年美国第十七任总统加菲尔德Garfield的方法证明勾股定理

    【答案】见解析。

    【解析】以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.

    RtΔEAD RtΔCBE,

    ADE = BEC.

    AED + ADE = 90º,

    AED + BEC = 90º.

    DEC = 180º―90º= 90º.

    ΔDEC是一个等腰直角三角形,

    它的面积等于c2

    DAE = 90º, EBC = 90º,

    ADBC.

    ABCD是一个直角梯形,它的面积等于S=(a+b2……

    又因为这个直角梯形的面积等于三个小三角形面积之和,即S= 2×ab+c2……

    (a+b2= 2×ab+c2

    化简:.

    从而结论得到证明。

     

    1.用初中教材出现的方法证明勾股定理

    【答案】见解析。

    【解析】做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.

    从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.

    左边图形面积S=a2+b2 + 4×ab

    右边图形面积S= c2 + 4×ab

    a2+b2 + 4×ab= c2 + 4×ab

    整理得:

    从而结论得到证明。

    2.利用邹元治的方法证明勾股定理

    【答案】见解析。

    【解析】以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.

    RtΔHAE RtΔEBF,

    AHE = BEF.

    AEH + AHE = 90º,

    AEH + BEF = 90º.

    HEF = 180º―90º= 90º.

    四边形EFGH是一个边长为c的正方形. 它的面积等于c2.

    RtΔGDH RtΔHAE,

    HGD = EHA.

    HGD + GHD = 90º,

    EHA + GHD = 90º.

    GHE = 90º,

    DHA = 90º+ 90º= 180º.

    ABCD是一个边长为a + b的正方形,它的面积等于(a+b2

    又因为大正方形的面积等于4个小三角形面积之和再加上小正方形面积,所以

     

    .

    从而结论得到证明。

    3.利用赵爽的方法证明勾股定理

    【答案】见解析。

    【解析】以a、b 为直角边(b>a), 以c为斜边作四个全等的直角三角形,则每个直角

    三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状.

    RtΔDAH RtΔABE,

    HDA = EAB.

    HAD + HAD = 90º

    EAB + HAD = 90º

    ABCD是一个边长为c的正方形,它的面积等于c2.

    EF=FG =GH=HE=b-a ,

    HEF=90º.

    EFGH是一个边长为b-a的正方形,它的面积等于(b-a2

    .

    .

    从而结论得到证明。

    4.利用梅文鼎的方法证明勾股定理

    【答案】见解析。

    【解析】做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.

    D、E、F在一条直线上, 且RtΔGEF RtΔEBD,

    EGF = BED,

    EGF + GEF = 90°

    BED + GEF = 90°

    BEG =180º―90º= 90º.

    AB=BE=EG=GA=c,

    ABEG是一个边长为c的正方形.

    ABC + CBE = 90º.

    RtΔABC RtΔEBD,

    ABC = EBD.

    EBD + CBE = 90º.

       CBD= 90º.

    BDE=90ºBCP=90º

    BC=BD=a.

    BDPC是一个边长为a的正方形.

    同理,HPFG是一个边长为b的正方形.

    设多边形GHCBE的面积为S,则

    从而结论得到证明。

    5.利用项明达的方法证明勾股定理

    【答案】见解析。

    【解析】做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

    过点Q作QPBC,交AC于点P.

    过点B作BMPQ,垂足为M;

    再过点F作FNPQ,垂足为N.

    BCA = 90º,QPBC,

    MPC = 90º

    BMPQ,

    BMP = 90º

    BCPM是一个矩形,即MBC = 90º.

    QBM + MBA = QBA = 90º

    ABC + MBA = MBC = 90º

    QBM = ABC,

    BMP = 90ºBCA = 90º,BQ = BA = c,

    RtΔBMQ RtΔBCA.

    同理可证RtΔQNF RtΔAEF.

    这时我们容易知道矩形BCPM是边长为a的正方形,矩形EFNP是边长为b的正方形,

    设多边形FNMBA的面积为S,则

    从而结论得到证明。

    6.利用欧几里得的方法证明勾股定理

    【答案】见解析。

    【解析】做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CLDE,交AB于点M,交DE于点L.

    AF = AC,AB = AD,

    FAB = GAD,

    ΔFAB ΔGAD,

    ΔFAB的面积等于a2

    ΔGAD的面积等于矩形ADLM的面积的一半,

    矩形ADLM的面积 =.

    同理可证,矩形MLEB的面积 =.

    正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积

    ,即 . 

    从而结论得到证明。

    7.利用辛卜松的方法证明勾股定理

    【答案】见解析。

    【解析】设直角三角形两直角边的长分别为a、b,斜边的长为c.

    作边长是a+b的正方形ABCD.  把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为

     

    把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为

     

    =.

      ,

      .

    从而结论得到证明。

    8.利用相似三角形性质证明勾股定理

    【答案】见解析。

    【解析】如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CDAB,垂足是D.

    ΔADC和ΔACB中,

    ADC = ACB = 90º

    CAD = BAC,

      ΔADC ΔACB.

    ADAC = AC AB,

      .

    同理可证,ΔCDB ΔACB,从而有

    .

    .

    从而结论得到证明。

    9.利用杨作玫方法证明勾股定理

    【答案】见解析。

    【解析】做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AFAC,AF交GT于F,AF交DT于R. 过B作BPAF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.

    BAD = 90ºPAC = 90º

    DAH = BAC.

    DHA = 90ºBCA = 90º

    AD = AB = c,

    RtΔDHA RtΔBCA.

    DH = BC = a,AH = AC = b.

    由作法可知, PBCA 是一个矩形,

    所以 RtΔAPB RtΔBCA. 即PB =

    CA = b,AP= a,从而PH = ba. 

    RtΔDGT RtΔBCA ,

    RtΔDHA RtΔBCA.

    RtΔDGT RtΔDHA .

    DH = DG = a,GDT = HDA .

    DGT = 90ºDHF = 90º

    GDH = GDT + TDH = HDA+ TDH = 90º

    DGFH是一个边长为a的正方形. 

    GF = FH = a . TFAF,TF = GTGF = ba .

    TFPB是一个直角梯形,上底TF=ba,下底BP= b,高FP=a +(ba).

    用数字表示面积的编号(如图),则以c为边长的正方形的面积为

                      

    =

    = .    

    代入,得

    = = .

      .

    从而结论得到证明。

    10.利用陈杰方法证明勾股定理

    【答案】见解析。

    【解析】设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).

    TBE = ABH = 90º

    TBH = ABE.

    BTH = BEA = 90º

    BT = BE = b,

    RtΔHBT RtΔABE.

    HT = AE = a.

    GH = GTHT = ba.

    GHF + BHT = 90º

    DBC + BHT = TBH + BHT = 90º

    GHF = DBC.

    DB = EBED = ba,

    HGF = BDC = 90º

    RtΔHGF RtΔBDC.

    .

    过Q作QMAG,垂足是M. BAQ = BEA = 90º,可知 ABE

    = QAM,而AB = AQ = c,所以RtΔABE RtΔQAM . 又RtΔHBT

    RtΔABE. 所以RtΔHBT RtΔQAM .

    .

    由RtΔABE RtΔQAM,又得QM = AE = a,AQM = BAE.

    AQM + FQM = 90ºBAE + CAR = 90ºAQM = BAE,

    FQM = CAR.

      QMF = ARC = 90º,QM = AR = a,

    RtΔQMF RtΔARC. .

    =

    =

    .

    从而结论得到证明。

     

    11.利用切割线定理证明勾股定理

    【答案】见解析。

    【解析】在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,

    以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为BCA = 90º,点C在B上,所以AC是B 的切线. 由切割线定理,得

    =

    =

    =

    .

    从而结论得到证明。

    12.利用托勒密定理证明勾股定理

    【答案】见解析。

    【解析】在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图).

    过点A作ADCB,过点B作BDCA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有

    AB = DC = c,AD = BC = a,

    AC = BD = b,

    ,即

    .

    从而结论得到证明。

    13.利用作直角三角形的内切圆方法证明勾股定理

    【答案】见解析。

    【解析】在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆O,切点分别为D、E、F(如图),设O的半径为r.

    AE = AF,BF = BD,CD = CE,

    = = r + r = 2r,

    .

     

    = =

    =

     =

        

    .

    从而结论得到证明。

    14.利用反证法证明勾股定理

    【答案】见解析。

    【解析】如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CDAB,垂足是D.

    假设,即假设 ,则由

    ==

    可知 ,或者 . 即 AD:ACAC:AB,或者 BD:BCBC:AB.

    ΔADC和ΔACB中,

    A = A,

    若 AD:ACAC:AB,则

    ADC≠∠ACB.

    ΔCDB和ΔACB中,

    B = B,

    若BD:BCBC:AB,则

    CDB≠∠ACB.

    ACB = 90º

    ADC90ºCDB90º.

    这与作法CDAB矛盾. 所以,的假设不能成立.

    .

    从而结论得到证明。

    15.利用射影定理证明勾股定理

    【答案】见解析。

    【解析】如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CDAB,垂足是D.

    根据射影定理,得

    AC2=AD·AB,     

    BC2=BD·BA

    即AC2+BC2=AD·AB+BD·BA=AB(AD+BD)=AB2    

    从而得a2+b2 = c2

    从而结论得到证明。

     

    相关试卷

    (通用版)中考数学总复习考点47 中考数学转化思想(含解析): 这是一份(通用版)中考数学总复习考点47 中考数学转化思想(含解析),共11页。试卷主要包含了 转化思想的含义,转化思想的表现形式,1米).,7﹣11,3m.,999,,8 B. 4等内容,欢迎下载使用。

    (通用版)中考数学总复习考点27 涉及圆的证明与计算问题(含解析): 这是一份(通用版)中考数学总复习考点27 涉及圆的证明与计算问题(含解析),共50页。试卷主要包含了与圆有关的概念,与圆有关的规律,点和圆,切线的规律,解题要领等内容,欢迎下载使用。

    (通用版)中考数学总复习考点26 菱形(含解析): 这是一份(通用版)中考数学总复习考点26 菱形(含解析),共27页。试卷主要包含了菱形的定义 ,菱形的性质,菱形的判定定理等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (通用版)中考数学总复习考点51 勾股定理的多种证明方法(含解析) 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map