山东省聊城市东昌府区博雅学校2022-2023学年八年级上学期开学考试数学试题
展开八年级数学试题
一、选择题(共12小题,每小题3分,共36分)
1.如图≌,若,则的度数为( )
A. B. C. D.
2.根据下列条件,能作出唯一三角形的是( )
A.AB=4,AC=3, B.,,AC=4
C.AB=4,BC=4,AC=8 D.,AB=6
3.下列是四张益智器具图片,从对称的角度来看,哪一张与另三张不一样( )
A. B. C. D.
4.在平面直角坐标系中,若点和点关于y轴对称,则( )
A. B.1 C.0 D.-1
5.下列四个选项中,不正确的是( )
A.如果ad=bc,那么
B.如果,那么ad=bc
C.如果,,那么
D.如果,,那么
6.若分式的值为0,则( )
A.x=2 B.x=-2 C. D.
7.现有一列数:6,3,3,4,5,4,3,若增加一个数x后,这列数的中位数仍不变,则x的值不可能为( )
A.3 B.4 C.5 D.6
8.在分析一组数据时,小华列出了方差的计算公式由公式提供的信息,可得出n的值是( )
A.2 B.3 C.4 D5.
9.下列命题中是真命题的是( )
A.相等的两个角是对顶角
B.两条直线被第三条直线所截,同位角相等
C.两边和其中一角分别相等的两个三角形全等
D.在同一平面内,若,,则
10.如右图,已知直线,若,则的度数为( )
A. B. C. D.
11.等腰三角形的一个外角是,则它的顶角的度数为( )
A. B.或 C. D.或
12.如右图,在中,,,以C为原点,AC所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使为等腰三角形,符合条件的M点有( )
A.5个 B.6个 C.7个 D.8个
二、填空题(共5小题,每小题3分、共15分)
13.如图,≌,过点A作于点F,若,则的度数是______.
14.在“线段、角、直角三角形、等边三角形”这四个图形中,对称轴最多的图形是______.
15.己知,则______.
16.______.
17.下表是抽查的某班10名同学中考体育测试成绩统计表.
成绩(分) | 30 | 25 | 20 | 15 |
人数(人) | 2 | x | y | 1 |
若成绩的平均数为23,中位数是a,众数是b,则a-b的值是______.
三、解答题(共8小题,满分69分)
18.(7分)先化简,再求值:,其中a=3.
19.(8分)如图,点E在线段BC上,且≌.求证:EA平分.
20.(8分)如图,中,DE是AC的垂直平分线,AE=3cm,的周长为14cm,求的周长.
21.(8分)解方程:
(1)
(2)
22.(8分)习近平总书记指出,“红色是中国共产党,中华人民共和国最鲜亮的底色”,要用好红色资源,赓续红色血脉,为引导广大青少年树立正确的世界观、人生观、价值观,传承红色基因,某校组织了一次以“赓续红色血脉、强国复兴有我”为主题的演讲比赛,比赛成绩分为以下5个等级:A.100分、B.90分、C.80分、D.70分、E.60分,比赛结束后随机抽取部分参赛选手的成绩,整理并绘制成如图统计图,请你根据统计图解答下列问题:
(1)所抽取学生比赛成绩的众数是______分,中位数是人______分;
(2)求所抽取学生比赛成绩的平均数;
(3)若参加此次比赛的学生共100名,且学校计划为比赛成绩进入A、B两个等级的学生购买奖品,请估计学校共需要准备多少份奖品?
23.(8分)如图,,AC=BD,点O是AD,BC的交点,过点O作于点E.
(1)求证:OA=OB;
(2)若AE=8,求AB的长.
24.(10分)一项工程,甲、乙两公司合做,12天可以完成,如果甲乙公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍.
(1)甲、乙公司单独完成此项工程,各需多少天?
(2)若已知甲乙合做完成此项工程共需费用102000元,并且乙公司每天费用比甲公司每天费用少1500元,分别计算甲、乙单独完成此项工程各需多少费用并选择合理的施工方案.
25.(12分)如图,于点H,若AB+BH=HC,猜想与有怎么样的数量关系并试说明理由.
八年级数学参考答案
一、选择题(共12小题,每小题3分,满分36分)
1.D. 2.B 3.B 4.D 5.A 6.A 7.A 8.C 9.D 10.D 11.C 12.D
二、填空题(共5小题,每小题3分,满分15分)
13. 14.等边三角形 15. 16. 17.2.5
三、解答题(共8小题,满分69分)
18.(7分)
解:.
当a=3时,原式.
19.(8分)证明:∵≌,∴,AB=AE.
∴,∴,∴EA平分.
20.(8分)解:∵DE是AC的垂直平分线,∴DA=DC,
∵的周长是14cm.∴AB+BD+AD=14cm,
∵AE=3cm,∴AC=6cm,∴的周长=AB+BC+AC=AB+BD+AD+AC=20cm.
21.(8分)解:(1)
去分母,得,移项,得,合并同类项,得,
系数化为1,得,把代入,得,
故原方程的解为;
(2),
去分母,得,去括号,得,
移项,得,合并同类项,得x=1,
把x=1代入,得,
所以x=1是原方程的增根,所以原方程无解.
22.(8分)解:(1)这次调查成绩出现次数最多的是80分,共出现8次,因此众数是80分,这次调查的总人数为1+4+8+4+3=20(人),
将这20人的成绩从小到大排列,处在中间位置的两个数都是80分,因此中位数是80分,故答案为:80、80;
(2)这20人的平均成绩为(分),
答:所抽取学生比赛成绩的平均数为78分;
(3)(份),
答:估计学校大约需要准备25份奖品.
23.(8分)
(1)证明:在与中,,
∴≌(SAS),∴,∴OA=OB;
(2)解:由(1)知OA=OB,又∵,∴.
24.(10分)解:(1)设甲公司单独完成此工程x天,则乙公司单独完成此项工程天,
根据题意,得,解得,x=20,经检验,x=20是方程的解且符合题意,
∴乙公司单独完成需要的时间为1.5x=30天.
答:甲乙两公司单独完成此工程各需要20天,30天;
(2)设甲公司每天的施工费y元,则乙公司每天的施工费元,
根据题意,得,解得,y=5000.
乙公司单独完成此工程所需施工费:(元),
从施工费用考虑,选择甲公司;从完工时间考虑,选择甲乙合作.
25.(12分)
解:,
理由:在HC上截取HD=HB,连接AD,
∵,BH=DH,∴AH是BD的垂直平分线,
∴AB=AD,∴,
∵AB+BH=HC,HD+DC=HC,∴AB=DC,
∴AD=DC,∴,
∵,∴,∴.
2020-2021学年山东省聊城市东昌府区八年级上学期期中考试数学试题: 这是一份2020-2021学年山东省聊城市东昌府区八年级上学期期中考试数学试题,共8页。试卷主要包含了填空题等内容,欢迎下载使用。
山东省聊城市东昌府区2022-2023学年八年级下学期期末数学试题(解析版): 这是一份山东省聊城市东昌府区2022-2023学年八年级下学期期末数学试题(解析版),共18页。试卷主要包含了答案写在试题上无效,一律不允许使用科学计算器等内容,欢迎下载使用。
山东省聊城市东昌府区2022-2023学年八年级下学期期中数学试题(含解析): 这是一份山东省聊城市东昌府区2022-2023学年八年级下学期期中数学试题(含解析),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。