所属成套资源:九年级数学各单元精品考卷
- 第二十一章达标测试卷2 试卷 0 次下载
- 第22章 二次函数 单元检测题 试卷 2 次下载
- 第二十二章 二次函数 过关自测卷 试卷 1 次下载
- 第二十二章检测卷 试卷 0 次下载
- 第二十二章达标测试卷1 试卷 2 次下载
初中数学人教版九年级上册22.1.1 二次函数测试题
展开
这是一份初中数学人教版九年级上册22.1.1 二次函数测试题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第二十二章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分) 1.下列各式中,y是x的二次函数的是( )A.y= B.y=2x+1C.y=x2+x-2 D.y2=x2+3x2.抛物线y=2x2+1的顶点坐标是( )A.(2,1) B.(0,1)C.(1,0) D.(1,2)3.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( )A.-3 B.-1C.2 D.34.抛物线y=x2-2x-3与x轴的交点个数是( )A.0个 B.1个C.2个 D.3个5.下列函数中,当x>0时,y随x值的增大而先增大后减小的是( )A.y=x2+1 B.y=x2-1C.y=(x+1)2 D.y=-(x-1)26.二次函数y=ax2+bx+c的部分对应值如下表:x…-2-10123…y…50-3-4-30…二次函数图象的对称轴是( )A.直线x=1 B.y轴C.直线x= D.直线x=-7.如图,二次函数y=ax2+bx+c的图象与x轴相交于(-2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是( )A.x<-2B.-2<x<4C.x>0D.x>48.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )9.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为( )A.y=-x2+10x+1200(0<x<60)B.y=-x2-10x+1200(0<x<60)C.y=-x2+10x+1250(0<x<60)D.y=-x2-10x+1250(x≤60)10.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为( )A.2 B.4 C.8 D.16第10题图11.抛物线y=-x2+6x-9的顶点为A,与y轴的交点为B,如果在抛物线上取点C,在x轴上取点D,使得四边形ABCD为平行四边形,那么点D的坐标是( )A.(-6,0) B.(6,0) C.(-9,0) D.(9,0)12.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点为B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是( )A.①②③ B.①③④ C.①③⑤ D.②④⑤ 第12题图 二、填空题(本大题共6小题,每小题4分,共24分)13.当a= 时,函数y=(a-1)xa2+1+x-3是二次函数.14.把二次函数y=x2-12x化为形如y=a(x-h)2+k的形式为 .15.已知A(4,y1),B(-4,y2)是抛物线y=(x+3)2-2的图象上两点,则y1 y2.16.若抛物线y=x2-2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为 .17.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-(x-4)2+3,由此可知铅球推出的距离是 m.18.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为 . 三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)二次函数的图象如图所示,求这条抛物线的解析式(结果化成一般式). 20.(10分)已知△ABC中,边BC的长与BC边上的高的和为20.写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长. 21.(10分)已知二次函数y=x2-6x+8.(1)将y=x2-6x+8化成y=a(x-h)2+k的形式;(2)当0≤x≤4时,y的最小值是 ,最大值是 ;(3)当y<0时,根据函数草图直接写出x的取值范围. 22.(10分)已知在平面直角坐标系内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积. 23.(12分)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间定价增加10x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数关系式;(2)设宾馆每天的利润为w元,当每间房价定价为多少元时,宾馆每天所获利润最大?最大利润是多少? 24.(12分)已知抛物线y=x2-px+-.(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;(2)证明:无论p为何值,抛物线与x轴必有交点. 25.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x的值;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由. 26.(14分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
答案:1.C 2.B 3.D 4.C 5.D 6.A 7.B 8.A 9.A10.B 11.D12.C 解析:对于抛物线y1=ax2+bx+c(a≠0),对称轴为直线x=-=1,∴2a+b=0,①正确;由抛物线图象可知a<0,c>0,x=->0,∴b>0,∴abc<0,②错误;由抛物线y1=ax2+bx+c(a≠0)图象与y=3只有一个交点,∴方程ax2+bx+c=3有两个相等的实数根,③正确;设抛物线与x轴的另一个交点是(x2,0),由抛物线的对称性可知=1,∴x2=-2,即抛物线与x轴的另一个交点是(-2,0),④错误;通过函数图象可直接得到当1<x<4时,有y2<y1,⑤正确.故选C.13.-1 14.y=(x-6)2-36 15.> 16.y=x2-117.10 18.-1或2或119.解:由图象可知抛物线的顶点坐标为(1,4),(1分)设此二次函数的解析式为y=a(x-1)2+4.(3分)把点(3,0)代入解析式,得4a+4=0,即a=-1.(7分)所以此函数的解析式为y=-(x-1)2+4=-x2+2x+3.(10分)20.解:y=x(20-x)=-x2+10x.(4分)解方程48=-x2+10x,得x1=12,x2=8,(9分)∴△ABC的面积为48时,BC的长为12或8.(10分)21.解:(1)y=(x-3)2-1;(3分)(2)-1(5分) 8(7分)(3)2<x<4.(10分)22.解:(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6得0=9+3b+6,解得b=-5,(3分)∴抛物线的表达式为y=x2-5x+6;(4分)(2)∵抛物线的表达式y=x2-5x+6,令y=0,即x2-5x+6=0,解得x1=2,x2=3.令x=0,则y=6.∴A(2,0),B(3,0),C(0,6).(8分)∴AB=1,OC=6,S△ABC=×1×6=3.(10分)23.解:(1)y=50-x(0≤x≤50,x为整数);(4分)(2)w=(120+10x-20)(50-x)=-10x2+400x+5000=-10(x-20)2+9000.(8分)∵a=-10<0,∴当x=20时,w取得最大值,最大值为9000.此时每个房间定价为120+10x=320(元).(11分)答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元.(12分)24.(1)解:对于抛物线y=x2-px+-,将x=0,y=1代入得-=1,解得p=,∴抛物线的解析式为y=x2-x+1.(2分)令y=0,得x2-x+1=0,解得x1=,x2=2.(5分)则抛物线与x轴交点的坐标为与(2,0);(6分)(2)证明:∵Δ=p2-4=p2-2p+1=(p-1)2≥0,∴无论p为何值,抛物线与x轴必有交点.(12分)25.解:(1)根据题意,得(30-2x)x=72,解得x1=3,x2=12.∵30-2x≤18,∴x≥6,∴x=12;(4分)(2)设苗圃园的面积为y,则y=x(30-2x)=-2x2+30x.由题意得30-2x≥8,∴x≤11.由(1)可知x≥6,∴x的取值范围是6≤x≤11.(6分)∵a=-2<0,对称轴为直线x=-=-=,∴当x=时,y取最大值,最大值为-2×+30×=112.5;(9分)当x=11时,y取最小值,最小值为-2×112+30×11=88.(11分)答:当平行于墙的一边长不小于8米时,这个苗圃园的面积的最大值为112.5平方米,最小值为88平方米.(12分)26.解:(1)根据已知条件可设抛物线的解析式为y=a(x-1)(x-5),(1分)把点A(0,4)代入上式,得a=,∴y=(x-1)(x-5)=x2-x+4=(x-3)2-,(3分)∴抛物线的对称轴是直线x=3;(4分)(2)存在.(5分)理由如下:∵点A(0,4),抛物线的对称轴是直线x=3,∴点A关于对称轴的对称点A′的坐标为(6,4).(6分)如图①,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.(7分)设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得解得∴y=x-.(8分)∵点P的横坐标为3,∴y=×3-=,∴P;(9分)(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.(10分)设N点的横坐标为t,此时点N(t,t2-t+4)(0<t<5).如图②,过点N作NG∥y轴交AC于G,作AD⊥NG于D.(11分)由点A(0,4)和点C(5,0)可求出直线AC的解析式为y=-x+4.则G(t,-t+4),此时NG=-t+4-=-t2+4t.∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AD·NG+NG·CF=NG·OC=××5=-2t2+10t=-2+.∴当t=时,△CAN面积的最大值为.(13分)当t=时,y=t2-t+4=-3,∴N.(14分)
相关试卷
这是一份初中数学人教版九年级上册22.1.1 二次函数当堂达标检测题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数练习题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版九年级上册22.1.1 二次函数课后作业题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。