中考数学二轮复习压轴题培优专题10 三角形问题(含解析)
展开
专题10 三角形问题
【考点1】三角形基础知识
【例1】1.(2020·湛江)如图,在中,,,平分,则的度数是( )
A. B. C. D.
【答案】C
【分析】
在中,利用三角形内角和为求,再利用平分,求出的度数,再在利用三角形内角和定理即可求出的度数.
【详解】
∵在中,,.
∴.
∵平分.
∴.
∴.
故选C.
【点睛】
本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键.
【变式1-1】(2020·浙江绍兴·中考真题)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )
A.4 B.5 C.6 D.7
【答案】B
【分析】
利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.
【详解】
①长度分别为5、3、4,能构成三角形,且最长边为5;
②长度分别为2、6、4,不能构成三角形;
③长度分别为2、7、3,不能构成三角形;
④长度分别为6、3、3,不能构成三角形;
综上所述,得到三角形的最长边长为5.
故选:B.
【点睛】
此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.
【变式1-2】(2020·甘肃天水·)一个三角形的两边长分别为2和5,第三边长是方程的根,则该三角形的周长为_______.
【答案】13
【分析】
先利用因式分解法解方程x2-8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.
【详解】
解:∵x2-8x+12=0,
∴,
∴x1=2,x2=6,
∵三角形的两边长分别为2和5,第三边长是方程x2-8x+12=0的根,当x=2时,2+2<5,不符合题意,
∴三角形的第三边长是6,
∴该三角形的周长为:2+5+6=13.
故答案为:13.
【点睛】
本题考查了解一元二次方程的因式分解法及三角形的三边关系,熟练掌握相关性质及定理是解题的关键.
【考点2】全等三角形的判定与性质的应用
【例2】(2020·辽宁鞍山·中考真题)如图,在四边形中,,点E,F分别在,上,,,求证:.
【答案】见解析
【分析】
连接AC,证明△ACE≌△ACF,得到∠CAE=∠CAF,再利用角平分线的性质定理得到CB=CD.
【详解】
解:连接AC,
∵AE=AF,CE=CF,AC=AC,
∴△ACE≌△ACF(SSS),
∴∠CAE=∠CAF,
∵∠B=∠D=90°,
∴CB=CD.
【点睛】
本题考查了全等三角形的判定和性质,角平分线的性质定理,解题的关键是连接AC,证明三角形全等.
【变式2-1】(2020·山东东营·中考真题)如图1,在等腰三角形中,点分别在边上,连接点分别为的中点.
(1)观察猜想
图1中,线段的数量关系是____,的大小为_____;
(2)探究证明
把绕点顺时针方向旋转到如图2所示的位置,连接判断的形状,并说明理由;
(3)拓展延伸
把绕点在平面内自由旋转,若,请求出面积的最大值.
【答案】(1)相等,;(2)是等边三角形,理由见解析;(3)面积的最大值为.
【分析】
(1)根据"点分别为的中点",可得MNBD,NPCE ,根据三角形外角和定理,等量代换求出.
(2)先求出,得出,根据MNBD,NPCE ,和三角形外角和定理,可知MN=PN,再等量代换求出,即可求解.
(3)根据,可知BD最大值,继而求出面积的最大值.
【详解】
由题意知:AB=AC,AD=AE,且点分别为的中点,
∴BD=CE,MNBD,NPCE,MN=BD,NP=EC
∴MN=NP
又∵MNBD,NPCE,∠A=,AB=AC,
∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C=
根据三角形外角和定理,
得∠ENP=∠NBP+∠NPB
∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,
∠NPB=∠C,∠MNE=∠DBE,
∴∠MNP=∠DBE+∠NBP+∠C
=∠ABC+∠C =.
是等边三角形.
理由如下:
如图,由旋转可得
在ABD和ACE中
.
点分别为的中点,
是的中位线,
且
同理可证且
.
在中
∵∠MNP=,MN=PN
是等边三角形.
根据题意得:
即,从而
的面积.
∴面积的最大值为.
【点睛】
本题主要考查了三角形中点的性质、三角形相似的判定定理、三角形外角和定理以及图形旋转的相关知识;正确掌握三角形相似的判定定理、三角形外角和定理以及图形旋转的相关知识是解题的关键.
【变式2-2】(2020·山东烟台·中考真题)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
(问题解决)
(1)如图1,若点D在边BC上,求证:CE+CF=CD;
(类比探究)
(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
【答案】(1)见解析;(2)FC=CD+CE,见解析
【分析】
(1)在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;
(2)过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.
【详解】
(1)证明:在CD上截取CH=CE,如图1所示:
∵△ABC是等边三角形,
∴∠ECH=60°,
∴△CEH是等边三角形,
∴EH=EC=CH,∠CEH=60°,
∵△DEF是等边三角形,
∴DE=FE,∠DEF=60°,
∴∠DEH+∠HEF=∠FEC+∠HEF=60°,
∴∠DEH=∠FEC,
在△DEH和△FEC中,
,
∴△DEH≌△FEC(SAS),
∴DH=CF,
∴CD=CH+DH=CE+CF,
∴CE+CF=CD;
(2)解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:
∵△ABC是等边三角形,
∴∠A=∠B=60°,
过D作DG∥AB,交AC的延长线于点G,如图2所示:
∵GD∥AB,
∴∠GDC=∠B=60°,∠DGC=∠A=60°,
∴∠GDC=∠DGC=60°,
∴△GCD为等边三角形,
∴DG=CD=CG,∠GDC=60°,
∵△EDF为等边三角形,
∴ED=DF,∠EDF=∠GDC=60°,
∴∠EDG=∠FDC,
在△EGD和△FCD中,
,
∴△EGD≌△FCD(SAS),
∴EG=FC,
∴FC=EG=CG+CE=CD+CE.
【点睛】
本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.
【考点3】等腰三角形与等边三角形的判定与性质的应用
【例3】(2020·内蒙古鄂尔多斯·中考真题)(1)(操作发现)
如图1,在边长为1个单位长度的小正方形组成的网格中,的三个顶点均在格点上.
①请按要求画图:将绕点A顺时针方向旋转90°,点B的对应点为点,点C的对应点为点.连接;
②在①中所画图形中,= °.
(2)(问题解决)
如图2,在中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.
(3)(拓展延伸)
如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).
【答案】(1)①见解析,②45;(2)135°;(3)
【分析】
(1)①根据旋转角,旋转方向画出图形即可.
②只要证明△ABB′是等腰直角三角形即可.
(2)如图2,过点E作EH⊥CD交CD的延长线于H.证明△ABC≌△EAH(AAS)即可解决问题.
(3)如图3中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.
【详解】
解:(1)①如图,△AB′C′即为所求.
②由作图可知,△ABB′是等腰直角三角形,
∴∠AB′B=45°,
故答案为45.
(2)如图2中,过点E作EH⊥CD交CD的延长线于H.
∵∠C=∠BAE=∠H=90°,
∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,
∴∠B=∠EAH,
∵AB=AE,
∴△ABC≌△EAH(AAS),
∴BC=AH,EH=AC,
∵BC=CD,
∴CD=AH,
∴DH=AC=EH,
∴∠EDH=45°,
∴∠ADE=135°.
(3)如图③中,∵AE⊥BC,BE=EC,
∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,
∵∠BAD=∠CAG,
∴∠BAC=∠DAG,
∵AB=AC,AD=AG,
∴∠ABC=∠ACB=∠ADG=∠AGD,
∴△ABC∽△ADG,
∵AD=kAB,
∴DG=kBC=2k,
∵∠BAE+∠ABC=90°,∠BAE=∠ADC,
∴∠ADG+∠ADC=90°,
∴∠GDC=90°,
∴CG==.
∴BD=CG=.
【点睛】
本题属于几何变换综合题,考查了等边三角形的判定和性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
【变式3-1】(2020·四川凉山·中考真题)如图,点P、Q分别是等边边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
(1)如图1,连接AQ、CP求证:
(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数
(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
【答案】(1)证明见解析;(2)不变;60°;(3)不变;120°.
【分析】
(1)根据点P、点Q以相同的速度,同时从点A、点B出发,可得BQ=AP,结合等边三角形的性质证全等即可;
(2)由(1)中全等可得∠CPA=∠AQB,再由三角形内角和定理即可求得∠AMP的度数,再根据对顶角相等可得的度数;
(3)先证出,可得∠Q=∠P,再由对顶角相等,进而得出∠QMC=∠CBP=120°.
【详解】
解:(1)证明:∵三角形ABC为等边三角形,
∴AB=AC,∠ABC=∠CAB=60°,
∵点P、点Q以相同的速度,同时从点A、点B出发,
∴BQ=AP,
在△ABQ与△CAB中,
∴.
(2)角度不变,60°,理由如下:
∵
∴∠CPA=∠AQB,
在△AMP中,
∠AMP=180°-(∠MAP+∠CPA)=180°-(∠MAP+∠AQB)=∠ABC=60°,
∴∠QMC=∠AMP=60°,
故∠QMC的度数不变,度数为60°.
(3)角度不变,120°,理由如下:
当点P、Q在AB、BC的延长线上运动时,
有AP=BQ,∴BP=CQ
∵∠ABC=∠BCA=60°,
∴∠CBP=∠ACQ=120°,
∴
∴∠Q=∠P,
∵∠QCM=∠BCP,
∴∠QMC=∠CBP=120°,
故∠QMC的度数不变,度数为120°.
【点睛】
本题考查等边三角形的性质、全等三角形的判定和性质、三角形内角和定理,灵活运用等边三角形的性质证全等是解题的关键.
【变式3-2】(2020·吉林中考真题)如图,是等边三角形,,动点从点出发,以的速度沿向点匀速运动,过点作,交折线于点,以为边作等边三角形,使点,在异侧.设点的运动时间为,与重叠部分图形的面积为.
(1)的长为______(用含的代数式表示).
(2)当点落在边上时,求的值.
(3)求关于的函数解析式,并写出自变量的取值范围.
【答案】(1);(2);(3)当时,;当时,;当时,.
【分析】
(1)根据“路程速度时间”即可得;
(2)如图(见解析),先根据等边三角形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理与性质可得,最后在中,利用直角三角形的性质列出等式求解即可得;
(3)先求出点Q与点C重合时x的值,再分、和三种情况,然后分别利用等边三角形的性质、正切三角函数、以及三角形的面积公式求解即可得.
【详解】
(1)由题意得:
故答案为:;
(2)如图,和都是等边三角形
,即
,
在和中,
在中,
,即
解得;
(3)是等边三角形
当点Q与点C重合时,
则,解得
结合(2)的结论,分以下三种情况:
①如图1,当时,重叠部分图形为
由(2)可知,等边的边长为
由等边三角形的性质得:PQ边上的高为
则
②如图2,当时,重叠部分图形为四边形EFPQ
则在中,,
在中,,即
则
③如图3,当时,重叠部分图形为
同②可知,,
在中,,即
则
综上,当时,;当时,;当时,.
【点睛】
本题考查了等边三角形的性质、三角形全等的判定定理与性质、直角三角形的性质、正切三角函数等知识点,较难的是题(3),依据题意,正确分三种情况讨论是解题关键.
【考点4】直角三角形的性质
【例4】(2020·云南中考真题)如图,四边形是菱形,点为对角线的中点,点在的延长线上,,垂足为,点在的延长线上,,垂足为.
(1)若,求证:四边形是菱形;
(2)若,的面积为16,求菱形的面积.
【答案】(1)证明见解析;(2)20.
【分析】
(1)由直角三角形斜边中线等于斜边一半和30度直角三角形性质性质可证,即可证明结论;
(2)由根据三角形面积求法可求AE,设AB=x,在,由勾股定理列方程即可求出菱形边长,进而可求面积.
【详解】
解:∵四边形是菱形,,
∴,
∵,,
∴,
又∵,
∴,
同理可得:,
∴,即:四边形是菱形;
(2)∵,
∴,
∴,
在四边形是菱形中,设,则
在中,,
∴,
解得,
∴菱形ABCD面积=.
【点睛】
本题主要考查了菱形的判定和性质,涉及了直角三角形性质和勾股定理.解题关键是灵活运用直角三角形性质得出线段之间发热关系.
【变式4-1】(2019·黑龙江中考真题)一张直角三角形纸片,,,,点为边上的任一点,沿过点的直线折叠,使直角顶点落在斜边上的点处,当是直角三角形时,则的长为_____.
【答案】或
【解析】
【分析】
依据沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD的长
【详解】
分两种情况:
①若,则, ,
连接,则,
,,
设,则,
中,
,
解得,
;
②若,则,,
四边形是正方形,
,,
,
,
设,则,,,
,
解得,
,
综上所述,的长为或,
故答案为:或.
【点睛】
此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形
【变式4-2】(2020·海南中考真题)如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是( )
A. B. C. D.
【答案】B
【分析】
由旋转的性质可知,,进而得出为等边三角形,进而求出.
【详解】
解:∵
由直角三角形中,30°角所对的直角边等于斜边的一半可知,
∴cm,
又∠CAB=90°-∠ABC=90°-30°=60°,
由旋转的性质可知:,且,
∴为等边三角形,
∴.
故选:B.
【点睛】
本题考查了直角三角形中30°角所对的直角边等于斜边的一半,旋转的性质等,熟练掌握其性质是解决此类题的关键.
【考点5】相似三角形的判定与性质的应用
【例5】(2020·上海中考真题)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.
(1)求证:△BEC∽△BCH;
(2)如果BE2=AB•AE,求证:AG=DF.
【答案】(1)证明见解析;(2)证明见解析.
【分析】
(1)先证明△CDF≌△CBE,进而得到∠DCF=∠BCE,再由菱形对边CDBH,得到∠H=∠DCF,进而∠BCE=∠H即可求解.
(2) 由BE2=AB•AE,得到=,再利用AGBC,平行线分线段成比例定理得到=,再结合已知条件即可求解.
【详解】
解:(1)∵四边形ABCD是菱形,
∴CD=CB,∠D=∠B,CDAB.
∵DF=BE,
∴△CDF≌△CBE(SAS),
∴∠DCF=∠BCE.
∵CDBH,
∴∠H=∠DCF,
∴∠BCE=∠H.且∠B=∠B,
∴△BEC∽△BCH.
(2)∵BE2=AB•AE,
∴=,
∵AGBC,
∴=,
∴=,
∵DF=BE,BC=AB,
∴BE=AG=DF,
即AG=DF.
【点睛】
本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
【变式5-1】(2020·山东济南·中考真题)在等腰△ABC中,AC=BC,是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
(1)当∠CAB=45°时.
①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是 .线段BE与线段CF的数量关系是 ;
②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
思路二:取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.
(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.
【答案】(1)①,;②仍然成立,证明见解析;(2),理由见解析.
【分析】
(1)①如图1中,连接BE,设DE交AB于T.首先证明再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°得到,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.
(2)结论:BE=.如图3中,取AB的中点T,连接CT,FT.证明,可得结论.
【详解】
解:(1)①如图1中,连接BE,设DE交AB于T.
∵CA=CB,∠CAB=45°,
∴∠CAB=∠ABC=45°,
∴∠ACB=90°,
∵∠ADE=∠ACB=45°,∠DAE=90°,
∴∠ADE=∠AED=45°,
∴AD=AE,
∴AT⊥DE,DT=ET,
∴AB垂直平分DE,
∴BD=BE,
∵∠BCD=90°,DF=FB,
∴CF=BD,
∴CF=BE.
故答案为:∠EAB=∠ABC,CF=BE.
②结论不变.
解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.
∵∠ACB=90°,CA=CB,AM=BM,
∴CM⊥AB,CM=BM=AM,
由①得:
设AD=AE=y.FM=x,DM=a,
点F是BD的中点,
则DF=FB=a+x,
∵AM=BM,
∴y+a=a+2x,
∴y=2x,即AD=2FM,
∵AM=BM,EN=BN,
∴AE=2MN,MN∥AE,
∴MN=FM,∠BMN=∠EAB=90°,
∴∠CMF=∠BMN=90°,
∴(SAS),
∴CF=BN,
∵BE=2BN,
∴CF=BE.
解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到,连接DT,GT,BG.
∵AD=AE,∠EAD=90°,EG=DG,
∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,
∵∠CAB=45°,
∴∠CAG=90°,
∴AC⊥AG,
∴AC∥DE,
∵∠ACB=∠CBT=90°,
∴AC∥BT∥,
∵AG=BT,
∴DG=BT=EG,
∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,
∴BD与GT互相平分,
∵点F是BD的中点,
∴BD与GT交于点F,
∴GF=FT,
由旋转可得;
是等腰直角三角形,
∴CF=FG=FT,
∴CF=BE.
(2)结论:BE=.
理由:如图3中,取AB的中点T,连接CT,FT.
∵CA=CB,
∴∠CAB=∠CBA=30°,∠ACB=120°,
∵AT=TB,
∴CT⊥AB,
∴AT=,
∴AB=,
∵DF=FB,AT=TB,
∴TF∥AD,AD=2FT,
∴∠FTB=∠CAB=30°,
∵∠CTB=∠DAE=90°,
∴∠CTF=∠BAE=60°,
∵∠ADE=∠ACB=60°,
∴AE=AD=FT,
∴,
∴,
∴,
∴.
【点睛】
本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数的应用,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
【变式5-2】(2020·湖南益阳·中考真题)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:
(1)如图1,正方形中,是上的点,将绕点旋转,使与重合,此时点的对应点在的延长线上,则四边形为“直等补”四边形,为什么?
(2)如图2,已知四边形是“直等补”四边形,,,,点到直线的距离为.
①求的长.
②若、分别是、边上的动点,求周长的最小值.
【答案】(1)见解析;(2)①BE=4;②周长的最小值为
【分析】
(1)由旋转性质证得∠F+∠BED=∠BEC+∠BED=180°,∠FBE=∠ABF+∠ABE=∠CBE+∠ABE=90°,BF=BE,进而可证得四边形为“直等补”四边形;
(2)如图2,将△ABE绕点B顺时针旋转90°得到△CBF,可证得四边形EBFD是正方形,则有BE=FD,设BE=x,则FC=x-1,由勾股定理列方程解之即可;
(3)如图3,延长CD到P,使DP=CD=1,延长CB到T,使TB=BC=5,则NP=NC,MT=MC,
由△MNC的周长=MC+MN+NC=MT+MN+NP≥PT知,当T、M、N、P共线时,△MNC的周长取得最小值PT,过P作PH⊥BC交BC延长线于H,易证△BFC∽△PHC,求得CH、PH,进而求得TH,在Rt△PHT中,由勾股定理求得PT,即可求得周长的最小值.
【详解】
(1)如图1由旋转的性质得:∠F=∠BEC,∠ABF=∠CBE,BF=BE
∵∠BEC+∠BED=180°,∠CBE+∠ABE=90°,
∴∠F+∠BED=180°,
∠ABF+∠ABE=90°即∠FBE=90°,
故满足“直等补”四边形的定义,
∴四边形为“直等补”四边形;
(2)∵四边形是“直等补”四边形,AB=BC,
∴∠A+∠BCD=180°,∠ABC=∠D=90°,
如图2,将△ABE绕点B顺时针旋转90°得到△CBF,
则∠F=∠AEB=90°,∠BCF+∠BCD=180°,BF=BE
∴D、C、F共线,
∴四边形EBFD是正方形,
∴BE=FD,
设BE=x,则CF=x-1,
在Rt△BFC中,BC=5,
由勾股定理得:,即,
解得:x=4或x=﹣3(舍去),
∴BE=4
(3)如图3,延长CD到P,使DP=CD=1,延长CB到T,使TB=BC=5,
则NP=NC,MT=MC,
∴△MNC的周长=MC+MN+NC=MT+MN+NP≥PT
当T、M、N、P共线时,△MNC的周长取得最小值PT,
过P作PH⊥BC,交BC延长线于H,
∵∠F=∠PHC=90°,∠BCF=∠PCH,
∴△BCF∽△PCH,
∴,
即,
解得:,
在Rt△PHT中,TH=,
,
∴周长的最小值为.
【点睛】
本题是一道四边形的综合题,涉及旋转的性质、正方形的判定与性质、勾股定理、解一元二次方程、相似三角形的判定与性质、垂直平分线性质、动点的最值问题等知识,解答的关键是认真审题,分析图形,寻找相关信息的联系点,借用类比等解题方法确定解题思路,进而进行推理、探究、发现和计算.
【考点6】锐角三角函数及其应用
【例6】(2020·山东日照·中考真题)阅读理解:
如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=,sinB=,可得==c=2R,即:===2R,(规定sin90°=1).
探究活动:
如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么: (用>、=或<连接),并说明理由.
事实上,以上结论适用于任意三角形.
初步应用:
在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.
综合应用:
如图3,在某次数学活动中,小凤同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度(结果保留小数点后一位).(≈1.732,sin15°=)
【答案】探究活动:=,=,=;初步应用:;综合应用:古塔高度约为36.6m.
【分析】
探究活动:过点C作直径CD交⊙O于点D,连接BD,根据圆周角定理和正弦概念即可得出,同理得出,从而得出答案;
初步应用:根据,得出,即可得出b的值;
综合应用:由题意得:∠D=90°,∠A=15°,∠DBC=45°,AB=100,可知∠ACB=30°.设古塔高DC=x,则BC=,灾解直角三角形即可得出答案.
【详解】
解:探究活动:,
理由如下:
如图2,过点C作直径CD交⊙O于点D,连接BD,
∴∠A=∠D,∠DBC=90°,
∴sinA=sinD,sinD=,
∴,
同理可证:,
∴;
故答案为:=,=,=.
初步应用:
∵,
∴,
∴.
综合应用:
由题意得:∠D=90°,∠A=15°,∠DBC=45°,AB=100,
∴∠ACB=30°.
设古塔高DC=x,则BC=,
∵,
∴,
∴,
∴,
∴古塔高度约为36.6m.
【点睛】
本题考查了圆周角定理、解直角三角形,添加合适的辅助线是解题的关键.
【变式6-1】(2020·湖北荆门·中考真题)如图,海岛B在海岛A的北偏东方向,且与海岛A相距20海里,一艘渔船从海岛B出发,以5海里/时的速度沿北偏东方向航行,同时一艘快艇从海岛A出发,向正东方向航行.2小时后,快艇到达C处,此时渔船恰好到达快艇正北方向的E处.
(1)求的度数;
(2)求快艇的速度及C,E之间的距离.
(参考数据:)
【答案】(1);(2)快艇的速度为9.85海里时,C,E之间的距离为19.9海里.
【分析】
(1)过点B作于点D,作于点E,根据题意求出∠ABD和∠ADE的度数,即可求解;
(2)求出BE的长度,根据解直角三角形求出BF和EF的长度,在中,求出AD、BD的长度,证出四边形为矩形,可求得快艇的速度和CE之间的距离.
【详解】
(1)过点B作于点D,作于点E.
由题意得:,,
∵,
∴,
而
∴.
(2)(海里)
在中,,
(海里),
(海里),
在中,,
(海里),
(海里),
∵,,,∴,
∴四边形为矩形,
∴,
∴
,
设快艇的速度为v海里/时,则(海里时)
答:快艇的速度为9.85海里时,C,E之间的距离为19.9海里.
【点睛】
本题考查矩形的判定与性质、解直角三角形的实际应用−方位角问题,理清题中各个角的度数,熟练掌握解直角三角形的方法是解题的关键.
【变式6-2】(2020·山东淄博·中考真题)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100千米,≈1.4,≈1.7等数据信息,解答下列问题:
(1)公路修建后,从A地到景区B旅游可以少走多少千米?
(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?
【答案】(1)从A地到景区B旅游可以少走35千米;(2)施工队原计划每天修建0.14千米.
【详解】
解:(1)过点C作AB的垂线CD,垂足为D,
在直角△BCD中,AB⊥CD,sin30°=,BC=1000千米,
∴CD=BC•sin30°=100×=50(千米),BD=BC•cos30°=100×=50(千米),
在直角△ACD中,AD=CD=50(千米),AC==50(千米),
∴AB=50+50(千米),
∴AC+BC﹣AB=50+100﹣(50+50)=50+50﹣50≈35(千米).
答:从A地到景区B旅游可以少走35千米;
(2)设施工队原计划每天修建x千米,
依题意有,﹣=50,
解得x=0.14,经检验x=0.14是原分式方程的解.
答:施工队原计划每天修建0.14千米.
(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,解直角三角形求出CD的长度和BD的长度,在直角△ACD中,解直角三角形求出AD的长度和AC的长度,再求出AB的长度,进而求出从A地到景区B旅游可以少走多少千米;
(2)本题先由题意找出等量关系即原计划的工作时间﹣实际的工作时间=50,然后列出方程可求出结果,最后检验并作答.
1.(2020·广西玉林·中考真题)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个( )
A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形
【答案】A
【分析】
先根据方位角的定义分别可求出,再根据角的和差、平行线的性质可得,,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得.
【详解】
由方位角的定义得:
由题意得:
由三角形的内角和定理得:
是等腰直角三角形
即A,B,C三岛组成一个等腰直角三角形
故选:A.
【点睛】
本题考查了方位角的定义、平行线的性质、三角形的内角和定理、等腰直角三角形的定义等知识点,掌握理解方位角的概念是解题关键.
2.(2020·湖北荆门·中考真题)中,,D为的中点,,则的面积为( )
A. B. C. D.
【答案】B
【分析】
连接AD,用等腰三角形的“三线合一”,得到的度数,及,由得,得,计算的面积即可.
【详解】
连接AD,如图所示:
∵,且D为BC中点
∴,且,
∴中,
∵
∴
∴
故选:B.
【点睛】
本题考查了等腰三角形的性质,及解直角三角形和三角形面积的计算,熟知以上知识是解题的关键.
3.(2020·山东济南·中考真题)如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,面积为10,则BM+MD长度的最小值为( )
A. B.3 C.4 D.5
【答案】D
【分析】
由基本作图得到得EF垂直平分AB,则MB=MA,所以BM+MD=MA+MD,连接MA、DA,如图,利用两点之间线段最短可判断MA+MD的最小值为AD,再利用等腰三角形的性质得到AD⊥BC,然后利用三角形面积公式计算出AD即可.
【详解】
解:由作法得EF垂直平分AB,
∴MB=MA,
∴BM+MD=MA+MD,
连接MA、DA,如图,
∵MA+MD≥AD(当且仅当M点在AD上时取等号),
∴MA+MD的最小值为AD,
∵AB=AC,D点为BC的中点,
∴AD⊥BC,
∵
∴
∴BM+MD长度的最小值为5.
故选:D.
【点睛】
本题考查的是线段的垂直平分线的性质,利用轴对称求线段和的最小值,三角形的面积,两点之间,线段最短,掌握以上知识是解题的关键.
4.(2020·宁夏中考真题)如图摆放的一副学生用直角三角板,,与相交于点G,当时,的度数是( )
A.135° B.120° C.115° D.105°
【答案】D
【分析】
过点G作,则有,,又因为和都是特殊直角三角形,,可以得到,有即可得出答案.
【详解】
解:过点G作,有,
∵在和中,
∴
∴,
∴
故的度数是105°.
【点睛】
本题主要考查了平行线的性质和三角形内角和定理,其中平行线的性质为:两直线平行,内错角相等;三角形内角和定理为:三角形的内角和为180°;其中正确作出辅助线是解本题的关键.
5.(2020·山东枣庄·中考真题)如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是( )
A. B. C. D.
【答案】B
【分析】
如图,作轴于.解直角三角形求出,即可.
【详解】
如图,作轴于.
由题意:,,
,
,,
,
,
故选B.
【点睛】
本题考查坐标与图形变化﹣旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
6.(2020·四川内江·中考真题)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知,则EF的长为( )
A.3 B.5 C. D.
【答案】C
【分析】
由矩形的性质和已知求出BD=5,根据折叠的性质得△ABE≌△MBE,设AE的长度为x,在Rt△EMD中,由勾股定理求出DE的长度,同理在Rt△DNF中求出DF的长度,在Rt△DEF中利用勾股定理即可求出EF的长度.
【详解】
解:∵四边形ABCD是矩形,AB=3,BC=4,
∴BD==5,
设AE的长度为x,
由折叠可得:△ABE≌△MBE,
∴EM=AE=x,DE=4-x,BM=AB=3,DM=5-3=2,
在Rt△EMD中,EM2+DM2=DE2,
∴x2+22=(4-x)2,
解得:x=,ED=4-=,
设CF的长度为y,
由折叠可得:△CBF≌△NBF,
∴NF=CF=y,DF=3-y,BN=BC=4,DN=5-4=1,
在Rt△DNF中,DN2+NF2=DF2,
∴y2+12=(3-y)2,
解得:x=,DF=3-=,
在Rt△DEF中,EF=,
故答案为:C.
【点睛】
本题考查矩形的性质、折叠的性质、全等三角形的判定与性质和勾股定理,运用勾股定理求出DE和DF的长度是解题的关键.
7.(2020·江苏南通·中考真题)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )
A. B.2 C.2 D.3
【答案】A
【分析】
把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.
【详解】
解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,
在Rt△AHB中,
∵∠ABC=60°,AB=2,
∴BH=1,AH=,
在Rt△AHC中,∠ACB=45°,
∴AC=,
∵点D为BC中点,
∴BD=CD,
在△BFD与△CKD中,
,
∴△BFD≌△CKD(AAS),
∴BF=CK,
延长AE,过点C作CN⊥AE于点N,
可得AE+BF=AE+CK=AE+EN=AN,
在Rt△ACN中,AN<AC,
当直线l⊥AC时,最大值为,
综上所述,AE+BF的最大值为.
故选:A.
【点睛】
本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.
8.(2020·四川绵阳·中考真题)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=( )
A.1 B.2 C.3 D.4
【答案】B
【分析】
过作,交于点,可得,得到与平行,再由为中点,得到,同时得到四边形为矩形,再由角平分线定理得到,进而求出的长,得到的长.
【详解】
解:过作,交于点,
,
,
,
,
为中点,
,
,即,
,
四边形为矩形,
,
平分,,,
,
,
则.
故选:.
【点睛】
本题考查了矩形的判定与性质,角平分线定理,以及平行线的性质,熟练掌握定理及性质是解本题的关键.
9.(2020·四川绵阳·中考真题)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=( )
A.16° B.28° C.44° D.45°
【答案】C
【分析】
延长,交于,根据等腰三角形的性质得出,根据平行线的性质得出,
【详解】
解:延长,交于,
是等腰三角形,,
,
,
,
,
,
故选:.
【点睛】
本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键.
10.(2020·湖北中考真题)如图,D是等边三角形外一点.若,连接,则的最大值与最小值的差为_____.
【答案】12
【分析】
以CD为边向外作等边三角形CDE,连接BE,可证得△ECB≌△DCA从而得到BE=AD,再根据三角形的三边关系即可得出结论.
【详解】
解:如图1,以CD为边向外作等边三角形CDE,连接BE,
∵CE=CD,CB=CA,∠ECD=∠BCA=60°,
∴∠ECB=∠DCA,
∴△ECB≌△DCA(SAS),
∴BE=AD,
∵DE=CD=6,BD=8,
∴8-6
故答案为:12
【点睛】
本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD转化为BE从而求解,是一道较好的中考题.
11.(2020·湖北黄石·中考真题)匈牙利著名数学家爱尔特希(P. Erdos,1913-1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则的度数是_____.
【答案】18°
【分析】
先证明△AOB≌△BOC≌△COD,得出∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,然后求出正五边形每个角的度数为108°,从而可得∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∠AOB=∠BOC=∠COD=72°,可计算出∠AOD=144°,根据OA=OD,即可求出∠ADO.
【详解】
∵这个五边形由正五边形的任意四个顶点及正五边形的中心构成,
∴根据正五边形的性质可得OA=OB=OC=OD,AB=BC=CD,
∴△AOB≌△BOC≌△COD,
∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,
∵正五边形每个角的度数为:=108°,
∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,
∴∠AOB=∠BOC=∠COD=(180°-2×54°)=72°,
∴∠AOD=360°-3×72°=144°,
∵OA=OD,
∴∠ADO=(180°-144°)=18°,
故答案为:18°.
【点睛】
本题考查了正多边形的内角,正多边形的性质,等腰三角形的性质,全等三角形的判定和性质,求出∠AOB=∠BOC=∠COD=72°是解题关键.
12.(2020·辽宁营口·中考真题)如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为_____.
【答案】(1+)2019
【分析】
解直角三角形求出A1B1,A2B2,A3B3,…,探究规律利用规律即可解决问题.
【详解】
解:在Rt△OA1B1中,
∵∠OA1B1=90°,∠MON=60°,OA1=1,
∴A1B1=A1A2=OA1•tan60°=,
∵A1B1∥A2B2,
∴,
∴,
∴A2B2=(1+),
同法可得,A3B3=(1+)2,
……
由此规律可知,A2020B2020=(1+)2019,
故答案为:(1+)2019.
【点睛】
本题考查解直角三角形,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.
13.(2020·广东深圳·中考真题)如图,已知四边形ABCD,AC与BD相交于点O,∠ABC=∠DAC=90°,,则=___.
【答案】
【分析】
过B点作BE//AD交AC于点E,证明,得到再证明利用设利用三角形的面积公式可得答案.
【详解】
解:过B点作BE//AD交AC于点E,
BE⊥AD,
,
∴
∴
由,
∴
设 则
故答案为:
14.(2020·四川宜宾·中考真题)在直角三角形ABC中,是AB的中点,BE平分交AC于点E连接CD交BE于点O,若,则OE的长是________.
【答案】
【分析】
过E点作EG⊥AB于G点,根据三角形面积公式求出CE=EG=3,延长CD交过B作BF⊥BC于F,可得△ACD≌△BFD,得到BF=8,再根据△CEO∽△FBO,找到比例关系得到EO=BE,再求出BE即可求解.
【详解】
过E点作EG⊥AB于G点,
∵BE平分
∴CE=EG,
设CE=EG=x,
∵,
∴AB=
∵S△ABC= S△ABE+S△BCE,
故
即
解得x=3
∴CE=3,
延长CD交过B作BF⊥BC于F,
∵D是AB中点
∴AD=BD
又AC∥BF
∴∠A=∠DBF,由∠ADC=∠DBF
∴△ACD≌△BFD,
∴BF=AC=8,
∵AC∥BF
∴△CEO∽△FBO,
∴
∴EO=BE=×=,
故答案为:.
【点睛】
此题主要考查相似三角形的判定与性质,解题的关键是熟知全等三角形的判定、角平分线的性质及相似三角形的判定与性质.
15.(2020·贵州黔南·中考真题)如图所示,在四边形中,,,.连接,,若,则长度是_________.
【答案】10
【分析】
根据直角三角形的边角间关系,先计算,再在直角三角形中,利用勾股定理即可求出.
【详解】
解:在中,
∵,
∴.
在中,
.
故答案为:10.
【点睛】
本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.
16.(2020·江苏常州·中考真题)如图,点C在线段上,且,分别以、为边在线段的同侧作正方形、,连接、,则_________.
【答案】
【分析】
设BC=a,则AC=2a,然后利用正方形的性质求得CE、CG的长、∠GCD=ECD=45°,进而说明△ECG为直角三角形,最后运用正切的定义即可解答.
【详解】
解:设BC=a,则AC=2a
∵正方形
∴EC=,∠ECD=
同理:CG=,∠GCD=
∴.
故答案为.
【点睛】
本题考查了正方形的性质和正切的定义,根据正方形的性质说明△ECG是直角三角形是解答本题的关键.
17.(2020·山东济宁·中考真题)如图,在△ABC中,AB=AC,点P在BC上.
(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.
【答案】(1)见解析;(2)见解析
【分析】
(1)根据相似三角形的性质可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD与AC的交点为D即可;
(2)利用外角的性质以及(1)中∠CPD=∠BAP可得∠CPD =∠ABC,再根据平行线的判定即可.
【详解】
解:(1)∵△PCD∽△ABP,
∴∠CPD=∠BAP,
故作∠CPD=∠BAP即可,
如图,即为所作图形,
(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,
∴∠BAP =∠ABC,
∴∠BAP=∠CPD=∠ABC,
即∠CPD =∠ABC,
∴PD∥AB.
【点睛】
本题考查了尺规作图,相似三角形的性质,外角的性质,难度不大,解题的关键是掌握尺规作图的基本作法.
18.(2020·广西河池·中考真题)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.
(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.
【答案】(1)证明见解析;(2)AE=BE;理由见解析
【分析】
(1)根据SAS可得出答案;
(2)在CE上截取CF=DE,证明△ADE≌△BCF(SAS),可得出AE=BF,∠AED=∠CFB,则可得出BE=BF.结论得证.
【详解】
(1)证明:在△ACE和△BCE中,
∵,
∴△ACE≌△BCE(SAS);
(2)AE=BE.
理由如下:
在CE上截取CF=DE,
在△ADE和△BCF中,
∵,
∴△ADE≌△BCF(SAS),
∴AE=BF,∠AED=∠CFB,
∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,
∴∠BEF=∠EFB,
∴BE=BF,
∴AE=BE.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是解题的关键.
19.(2020·山东菏泽·中考真题)如图1,四边形的对角线,相交于点,,.
图1 图2
(1)过点作交于点,求证:;
(2)如图2,将沿翻折得到.
①求证:;
②若,求证:.
【答案】(1)见解析;(2)①见解析;②见解析.
【分析】
(1)连接CE,根据全等证得AE=CD,进而AECD为平行四边形,由进行等边代换,即可得到;
(2)①过A作AE∥CD交BD于E,交BC于F,连接CE,,得,利用翻折的性质得到,即可证明;②证△BEF≌△CDE,从而得,进而得∠CED=∠BCD,且,得到△BCD∽△CDE,得,即可证明.
【详解】
解:(1)连接CE,
∵,
∴,
∵,,,
∴△OAE≌△OCD,
∴AE=CD,
∴四边形AECD为平行四边形,
∴AE=CD,OE=OD,
∵,
∴CD=BE,
∴;
(2)①过A作AE∥CD交BD于E,交BC于F,连接CE,
由(1)得,,
∴,
由翻折的性质得,
∴,
∴,
∴;
②∵,,
∴四边形为平行四边形,
∴,,
∴,
∵,
∴EF=DE,
∵四边形AECD是平行四边形,
∴CD=AE=BE,
∵AF∥CD,
∴,
∵EF=DE,CD=BE,,
∴△BEF≌△CDE(SAS),
∴,
∵,
∴∠CED=∠BCD,
又∵∠BDC=∠CDE,
∴△BCD∽△CDE,
∴,即,
∵DE=2OD,
∴.
【点睛】
本题考查相似三角形的判定与性质以及平行四边形的判定和性质,考查等腰三角形的判定与性质综合,熟练掌握各图形的性质并灵活运用是解题的关键.
20.(2020·贵州黔东南·中考真题)如图1,△ABC和△DCE都是等边三角形.
探究发现
(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.
拓展运用
(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.
(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.
【答案】(1)全等,理由见解析;(2)BD=;(3)△ACD的面积为,AD=.
【分析】
(1)依据等式的性质可证明∠BCD=∠ACE,然后依据SAS可证明△ACE≌△BCD;
(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;
(3)过点A作AF⊥CD于F,先根据平角的定义得∠ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得△ACD的面积,最后根据勾股定理可得AD的长.
【详解】
解:(1)全等,理由是:
∵△ABC和△DCE都是等边三角形,
∴AC=BC,DC=EC,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△BCD和△ACE中,
,
∴△ACE≌△BCD(SAS);
(2)如图3,由(1)得:△BCD≌△ACE,
∴BD=AE,
∵△DCE都是等边三角形,
∴∠CDE=60°,CD=DE=2,
∵∠ADC=30°,
∴∠ADE=∠ADC+∠CDE=30°+60°=90°,
在Rt△ADE中,AD=3,DE=2,
∴,
∴BD=;
(3)如图2,过点A作AF⊥CD于F,
∵B、C、E三点在一条直线上,
∴∠BCA+∠ACD+∠DCE=180°,
∵△ABC和△DCE都是等边三角形,
∴∠BCA=∠DCE=60°,
∴∠ACD=60°,
在Rt△ACF中,sin∠ACF=,
∴AF=AC×sin∠ACF=,
∴S△ACD=,
∴CF=AC×cos∠ACF=1×,FD=CD﹣CF=,
在Rt△AFD中,AD2=AF2+FD2=,
∴AD=.
【点睛】
本题考查等边三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等,第(3)小题巧作辅助线构造直角三角形是解题的关键.
21.(2020·辽宁沈阳·中考真题)如图,在矩形中,对角线的垂直平分线分别与边和边的延长线交于点,,与边交于点,垂足为点.
(1)求证:;
(2)若,,请直接写出的长为__________.
【答案】(1)详见解析;(2)
【分析】
(1)利用矩形的性质和线段垂直平分线的性质证明三角形全等即可.
(2)分别由勾股定理和线段垂直平分线求AC、AO,再证明∽,得到,求出AE即可.
【详解】
(1)证明:∵是的垂直平分线,
∴.
∵矩形,
∴即
∴.
在和中
∴.
(2)解:由勾股定理
∵MN是AC的垂直平分线
∴
∵
∴
∵
∴∽,
∴,即
解得.
【点睛】
本题考查了矩形的性质、线段垂直平分线的性质、勾股定理和相似三角形的性质与判定,解答关键是根据相似三角形构造方程求解.
22.(2020·四川眉山·中考真题)如图,和都是等边三角形,点、、三点在同一直线上,连接,,交于点.
(1)若,求证:;
(2)若,.
①求的值;
②求的长.
【答案】(1)见解析;(2)①;②
【分析】
(1)先根据两边对应成比例且夹角对应相等得出,再根据ASA得出即可.
(2)①过点作于点,根据直角三角形角所对直角边是斜边的一半可得,从而得出,由BE=6得出,,根据勾股定理得出,然后根据即可.
②在Rt中,根据勾股定理得出BD的长,再根据得出即可得出DF的长.
【详解】
(1)证明:,
又,,.
和均为等边三角形,
,,
,,
,.
(2)①,,,
,,
,.
,,,
过点作于点,
为等边三角形,
,.
在Rt中,,
.
②在Rt中,,
,,,
,,.
【点睛】
本题考查了相似三角形的性质和判定,等边三角形的性质,直角三角形的性质,以及锐角三角函数,熟练掌握相关的知识是解题的关键.
23.(2020·湖南郴州·中考真题)如图,在等腰直角三角形中,.点是的中点,以为边作正方形,连接.将正方形绕点顺时针旋转,旋转角为.
(1)如图,在旋转过程中,
①判断与是否全等,并说明理由;
②当时,与交于点,求的长.
(2)如图,延长交直线于点.
①求证:;
②在旋转过程中,线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
【答案】(1)①全等,证明见解析;②;(2)①证明见解析;②.
【分析】
(1)①由等腰直角三角形性质和正方形性质根据全等三角形判定定理(SAS)即可证明;②过A点作AM⊥GD,垂足为M,交FE与N,利用等腰三角形三线合一性质构造直角三角形,由勾股定理求出AM的长,进而得出,再由求出结果;
(2)①根据全等三角形性质可得,再在和中由三角形内角和定理得出,从而证明结论;②根据∠APC=90°得出PC最大值是∠GAD最大时,即GD⊥AG时,进而可知CEF三点共线,F与P重合,求出此时CE长,继而可得CP最大值.
【详解】
解:(1)①全等,理由如下:
在等腰直角三角形中,AD=CD,,
在正方形中,GD=ED,,
又∵,,
∴
在和中,
,
∴(SAS);
②如解图2,过A点作AM⊥GD,垂足为M,交FE与N,
∵点是的中点,
∴在正方形中,DE=GD=GF=EF=2,
由①得,
∴,
又∵,
∴,
∵AM⊥GD,
∴,
又∵ ,
∴四边形GMNF是矩形,
∴,
在中,,
∴
∵,
∴
∴,
∴.
(2)①由①得,
∴,
又∵,
∴,
∴,即:;
②∵,
∴,
∴当最大时,PC最大,
∵∠DAC=45°,是定值,
∴最大时,最大,PC最大,
∵AD=4,GD=2,
∴当GD⊥AG,最大,如解图3,
此时,
又∵,,
∴F点与P点重合,
∴CEFP四点共线,
∴CP=CE+EF=AG+EF=,
∴线段得最大值为:.
【点睛】
本题考查了三角形的综合;涉及了全等三角形的判定与性质,正方形的性质,勾股定理,解直角三角形等知识,能够准确画出旋转后满足条件的两个图形,构造直角三角形求解是关键.
24.(2020·黑龙江朝鲜族学校中考真题)∆ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180º.
(1)如图①,求证AD+BC=BE;
(2)如图②、图③,请分别写出线段AD,BC,BE之间的数量关系,不需要证明;
(3)若BE⊥BC,tan∠BCD=,CD=10,则AD=______.
【答案】(1)见解析;(2)图②结论:BC-AD = BE,图③结论:AD-BC = BE;(3)14-6或 2+6.
【分析】
(1)证明∠EAB=∠BCD,用ASA证明△EAB≌△DCB,可得AD+BC=BE;
(2)利用(1)的解题思路,证明△EAB≌△DCB,即可得到图②的结论BC-AD = BE;图③的结论AD-BC = BE;
(3)利用(2)的结论,过点D作BC边长的垂线,构造直角三角形,结合tan∠BCD=,计算相应边的长度,即可得到AD的值.
【详解】
(1)证明:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD,
∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD, AB=BC,
∴AD+BC=AD+AB=BD=BE.
(2)图②结论:BC-AD = BE,
证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD,
∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD, AB=BC,
∴BA-AD=BC-AD= BE,即BC-AD=BE
图③结论:AD-BC = BE.
证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD,
∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD, AB=BC,
∴AD-AB=AD-BC= BD=BE,即AD-AB=BE
(3)如图②所示,作于G
由(2)知△EAB≌△DCB,∴
∵
∴
在中,CD=10,,∴
在中,,
∴
如图③所示,作于H
由(2)知△EAB≌△DCB,∴
∴
∵
∴
在中,CD=10,,∴
在中,,
∴
综上所述:AD的长度为14-6或 2+6.
【点睛】
本题考查了由图形变化引起的类比探究,快速确定全等三角形,并准确利用全等三角形的性质是解题的关键.
25.(2020·湖南娄底·中考真题)如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E点距地面,从E点处测得D点俯角为30°,斜面长为,水平面长为,斜面的坡度为1∶4,求处于同一水平面上引桥底部的长.(结果精确到,).
【答案】引桥桥墩底端A点到起点B之间的距离为.
【分析】
延长,与相交于F,过点D、C两点分别作的垂线交于点G、H,计算AG,GH,BH的长度,再求和即可.
【详解】
解:如图,延长,与相交于F,过点D、C两点分别作的垂线交于点G、H,则在中,,
,
在中,
答:引桥桥墩底端A点到起点B之间的距离为.
【点睛】
本题考查了解直角三角形的实际应用问题,熟练的构造直角三角形,并计算各边的计算是解题的关键.
26.(2020·湖北随州·中考真题)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1)后人称之为“赵爽弦图”,流传至今.
(1)①请叙述勾股定理;
②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)
(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足的有_______个;
②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为,,直角三角形面积为,请判断,,的关系并证明;
(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形的边长为定值,四个小正方形,,,的边长分别为,,,,已知,则当变化时,回答下列问题:(结果可用含的式子表示)
①_______;
②与的关系为_______,与的关系为_______.
【答案】(1)①如果直角三角形的两条直角边分别为,斜边为c,那么,(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.);②证明见解析;(2)①3,②结论;(3)①,②, .
【分析】
(1)①根据所学的知识,写出勾股定理的内容即可;
②根据题意,利用面积相等的方法,即可证明勾股定理成立;
(2)①根据题意,设直角三角形的三边分别为a、b、c,利用面积相等的方法,分别求出面积的关系,即可得到答案;
②利用三角形的面积加上两个小半圆的面积,然后减去大半圆的面积,即可得到答案;
(3)①由(1)(2)中的结论,结合勾股定理的应用可知,;
②由,则,同理可得,利用解直角三角形以及勾股定理,即可得到答案.
【详解】
解:(1)①如果直角三角形的两条直角边分别为,斜边为c,那么.
(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)
②证明:
在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.
即,
化简得.
在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.
即,化简得.
在图3中,梯形的面积等于三个直角三角形的面积的和.
即,化简.
(2)①根据题意,则如下图所示:
在图4中,直角三角形的边长分别为a、b、c,则
由勾股定理,得,
∴;
在图5中,三个扇形的直径分别为a、b、c,则
,,,
∴,
∵,
∴,
∴;
在图6中,等边三角形的边长分别为a、b、c,则
,,,
∵,,
∴,
∴;
∴满足的有3个,
故答案为:3;
②结论;
,
;
(3)①如图9,正方形A、B、C、D、E、F、M中,对应的边长分别为a、b、c、d、e、f、m,则有
由(1)(2)中的结论可知,面积的关系为:A+B=E,C+D=F,E+F=M,
∴,,,
∴
故答案为:;
②∵,
∴,,
由解直角三角形和正方形的性质,则
,,
∴;
同理:;
;
;
∴,
∴,
∵,
∴.
故答案为:;.
【点睛】
本题考查了求扇形的面积,解直角三角形,勾股定理的证明,以及正方形的性质,解题的关键是掌握勾股定理的应用,注意归纳推理等基础知识,考查运算求解能力、推理论证能力、归纳总结能力,是中档题.
中考数学二轮复习压轴题专题10 三角形问题(含解析): 这是一份中考数学二轮复习压轴题专题10 三角形问题(含解析),共66页。
中考数学二轮复习压轴题培优专题18 创新型与新定义综合问题(含解析): 这是一份中考数学二轮复习压轴题培优专题18 创新型与新定义综合问题(含解析),共84页。
中考数学二轮复习压轴题培优专题17 二次函数的面积问题(含解析): 这是一份中考数学二轮复习压轴题培优专题17 二次函数的面积问题(含解析),共97页。