中考数学二轮复习压轴题专题14 几何变换(含解析)
展开决胜2020中考数学压轴题全揭秘精品
专题14 几何变换问题
【考点1】平移变换问题
【例1】(2019·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )
A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)
【答案】A
【解析】
试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.
考点:坐标与图形变化-平移.
【变式1-1】(2019·甘肃中考真题)如图,在平面直角坐标系中,将四边形向下平移,再向右平移得到四边形,已知,则点坐标为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据A和A1的坐标得出四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形,则B的平移方法与A点相同,即可得到答案.
【详解】
图形向下平移,纵坐标发生变化,图形向右平移,横坐标发生变化. A(-3,5)到A1(3,3)得向右平移3-(-3)=6个单位,向下平移5-3=2个单位.所以B(-4,3)平移后B1(2,1).
故选B.
【点睛】
此题考查图形的平移.,掌握平移的性质是解题关键
【变式1-2】(2019·广西中考真题)如图,在平面直角坐标系中,已知的三个顶点坐标分别是
(1)将向上平移4个单位长度得到,请画出;
(2)请画出与关于轴对称的;
(3)请写出的坐标.
【答案】(1)如图所示:,即为所求;见解析;(2)如图所示:,即为所求;见解析;(3).
【解析】
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用轴对称的性质得出对应点位置进而得出答案;
(3)利用所画图象得出对应点坐标.
【详解】
(1)如图所示:,即为所求;
(2)如图所示:,即为所求;
(3).
【点睛】
此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.
【考点2】轴对称变换问题(含折叠变换)
【例2】(2019·四川中考真题)如图,在菱形中,,点分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值是_____.
【答案】.
【解析】
【分析】
延长交于点,进而利用翻折变换的性质得出,,,,,再利用菱形的性质得出,,,设,,利用勾股定理得出,再根据三角函数进行计算即可解答
【详解】
延长交于点,
∵将四边形沿翻折,
∴,,,,
∵四边形是菱形
∴,,
∵,
∴设,,
∴,
∴,
∵
∴
∴
∵,
∴
∴
∴
∴,
∴,
∴
故答案为:.
【点睛】
此题考查翻折变换,菱形的性质,三角函数,解题关键在于利用折叠的性质进行解答
【变式2-1】(2019·江苏中考真题)如图,将平行四边形纸片沿一条直线折叠,使点与点重合,点落在点处,折痕为.求证:
(1);
(2).
【答案】(1)见解析;(2)见解析.
【解析】
【分析】
(1)依据平行四边形的性质,即可得到,由折叠可得,,即可得到;
(2)依据平行四边形的性质,即可得出,,由折叠可得,,,即可得到,,进而得出.
【详解】
(1)四边形是平行四边形,
,
由折叠可得, ,
,
,
;
(2)四边形是平行四边形,
,,
由折叠可得,,,
,,
又,
.
【点睛】
本题考查了平行四边形的性质,折叠的性质,全等三角形的判定,熟练掌握平行四边形的性质以及折叠的性质是解题的关键.
【变式2-2】(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.
(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;
(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为 ;
(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.
【答案】(1)4;(2)5;(3)面积不变,S△ACB’=;(4)24+4
【解析】
【分析】
(1)证明△APB′是等边三角形即可解决问题;
(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;
(3)如图3中,结论:面积不变,证明B B′//AC即可;
(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.
【详解】
(1) 如图1,∵△ABC为等边三角形,
∴∠A=60°,AB=BC=CA=8,
∵PB=4,
∴PB′=PB=PA=4,
∵∠A=60°,
∴△APB′是等边三角形,
∴AB′=AP=4,
故答案为4;
(2)如图2,设直线l交BC于点E,连接B B′交PE于O,
∵PE∥AC,
∴∠BPE=∠A=60°,∠BEP=∠C=60°,
∴△PEB是等边三角形,
∵PB=5,B、B′关于PE对称,
∴BB′⊥PE,BB′=2OB,
∴OB=PB·sin60°=,
∴BB′=5,
故答案为5;
(3)如图3,结论:面积不变.
过点B作BE⊥AC于E,
则有BE=AB·sin60°=,
∴S△ABC==16,
∵B、B′关于直线l对称,
∴BB′⊥直线l,
∵直线l⊥AC,
∴AC//BB′,
∴S△ACB’=S△ABC=16;
(4)如图4,当B′P⊥AC时,△ACB′的面积最大,
设直线PB′交AC于E,
在Rt△APE中,PA=2,∠PAE=60°,
∴PE=PA·sin60°=,
∴B′E=B′P+PE=6+,
∴S△ACB最大值=×(6+)×8=24+4.
【点睛】
本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.
【考点3】旋转变换问题
【例3】(2019·山东中考真题)(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-3≤PC≤5+3.
【解析】
【分析】
(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.
(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;
(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-3≤BE≤5+3.
【详解】
(1)结论:AD=BE,AD⊥BE.
理由:如图1中,
∵△ACB与△DCE均为等腰直角三角形,
∴AC=BC,CE=CD,
∠ACB=∠ACD=90°,
在Rt△ACD和Rt△BCE中
∴△ACD≌△BCE(SAS),
∴AD=BE,∠EBC=∠CAD
延长BE交AD于点F,
∵BC⊥AD,
∴∠EBC+∠CEB=90°,
∵∠CEB=AEF,
∴∠EAD+∠AEF=90°,
∴∠AFE=90°,即AD⊥BE.
∴AD=BE,AD⊥BE.
故答案为AD=BE,AD⊥BE.
(2)结论:AD=BE,AD⊥BE.
理由:如图2中,设AD交BE于H,AD交BC于O.
∵△ACB与△DCE均为等腰直角三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=90°,
∴ACD=∠BCE,
在Rt△ACD和Rt△BCE中
,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CAD=∠CBE,
∵∠CAO+∠AOC=90°,∠AOC=∠BOH,
∴∠BOH+∠OBH=90°,
∴∠OHB=90°,
∴AD⊥BE,
∴AD=BE,AD⊥BE.
(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,
∴PC=BE,
图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-3,
图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+3,
∴5-3≤BE≤5+3,
即5-3≤PC≤5+3.
【点睛】
本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.
【变式3-1】(2019·辽宁中考真题)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4).
(1)画出与△ABC关于y轴对称的△A1B1C1.
(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.
(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)
【答案】(1)作图见解析;(2)作图见解析;(3)π.
【解析】
【分析】
(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出A、C的对应点A2、C2即可;
(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.
【详解】
解:(1)如图,△AlB1C1为所作.
(2)如图,△A2BC2为所作;
(3)AB==3,
所以线段AB在旋转过程中扫过的图形面积==π.
【点睛】
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积公式.
【变式3-2】(2019·江苏中考真题)如图①,在中,,,D是BC的中点.
小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
① ;②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在线段AD上运动时,求AE的最小值.
【答案】(1)①50;②;(2);(3)AE的最小值.
【解析】
【分析】
(1)①利用等腰三角形的性质即可解决问题.②证明,,推出即可.
(2)如图③中,以P为圆心,PB为半径作⊙P.利用圆周角定理证明即可解决问题.
(3)因为点E在射线CE上运动,点P在线段AD上运动,所以当点P运动到与点A重合时,AE的值最小,此时AE的最小值.
【详解】
(1)①如图②中,
∵,,
∴,
②结论:.
理由:∵,,
∴,
∴,
∴,
∵AE垂直平分线段BC,
∴,
∴,
∵,,
∴,
∴,
∴.
故答案为50,.
(2)如图③中,以P为圆心,PB为半径作⊙P.
∵AD垂直平分线段BC,
∴,
∴,
∵,
∴ .
(3)如图④中,作于H,
∵点E在射线CE上运动,点P在线段AD上运动,
∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值.
【点睛】
本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.
【考点4】位似变换问题
【例4】(2019·广西中考真题)如图,与是以坐标原点为位似中心的位似图形,若点,,则的面积为__.
【答案】18.
【解析】
【分析】
根据,的坐标得到位似比,继而得到A、C对应点的坐标,再用所在的矩形的面积减去顶点处的三角形面积即可求得答案.
【详解】
∵与是以坐标原点为位似中心的位似图形,
若点,,
∴位似比为:,
∵,,
∴,
∴的面积为:,
故答案为:18.
【点睛】
本题考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键.
【变式4-1】(2019·山东中考真题)在平面直角坐标系中,三个顶点的坐标分别为.以原点为位似中心,把这个三角形缩小为原来的,得到,则点的对应点的坐标是__________.
【答案】或
【解析】
【分析】
根据位似图形的中心和位似比例即可得到点A的对应点C.
【详解】
解:以原点为位似中心,把这个三角形缩小为原来的,点的坐标为,
∴点的坐标为或,即或,
故答案为:或.
【点睛】
本题主要考查位似图形的对应点,关键在于原点的位似图形,要注意方向.
【变式4-2】(2018·四川中考真题)如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
【答案】(1)作图见解析;.(2)作图见解析;(3)16.
【解析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=16.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
一、单选题
1.(2019·浙江中考真题)在平面直角坐标系中,点与点关于y轴对称,则( )
A., B., C., D.,
【答案】B
【解析】
【分析】
根据点关于y轴对称,其横坐标互为相反数,纵坐标相同即可得到答案.
【详解】
A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选B
【点睛】
本题考查点坐标的轴对称,解题的关键熟练掌握点坐标的轴对称.
2.(2019·辽宁中考真题)如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的的坐标为( )
A.(4,3) B.(3,4) C.(5,3) D.(4,4)
【答案】A
【解析】
【分析】
直接利用在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k,进而结合已知得出答案.
【详解】
∵点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,
∴点P在A′C′上的对应点P′的的坐标为:(4,3).
故选:A.
【点睛】
此题主要考查了位似变换,正确得出位似比是解题关键.
3.(2019·湖南中考真题)如图,将绕点逆时针旋转70°到的位置,若,则( )
A.45° B.40° C.35° D.30°
【答案】D
【解析】
【分析】
首先根据旋转角定义可以知道,而,然后根据图形即可求出.
【详解】
解:∵绕点逆时针旋转70°到的位置,
∴,
而,
∴
故选:D.
【点睛】
此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.
4.(2019·广东中考真题)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念逐一进行判断即可得.
【详解】
A、是轴对称图形,不是中心对称图形,故不符合题意;
B、是轴对称图形,不是中心对称图形,故不符合题意;
C、是轴对称图形,也是中心对称图形,故符合题意;
D、是轴对称图形,不是中心对称图形,故不符合题意,
故选C.
【点睛】
本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
5.(2019·浙江中考真题)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( )
A.(2,-1) B.(1,-2) C. (-2,1) D. (-2,-1)
【答案】A
【解析】
【分析】
先找出对应点,再用线段顺次连接作出图形,根据图形解答即可.
【详解】
如图,
.
故选A.
【点睛】
本题考查了轴对称作图及中心对称作图,熟练掌握轴对称作图及中心对称的性质是解答本题的关键,中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.
6.(2019·四川中考真题)在平面直角坐标系中,将点向右平移个单位长度后得到的点的坐标为( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据直角坐标系的坐标平移即可求解.
【详解】
一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A
【点睛】
此题主要考查坐标的平移,解题的关键是熟知直角坐标系的特点.
7.(2019·湖南中考真题)点关于原点的对称点坐标是( )
A. B. C. D.
【答案】B
【解析】
【分析】
坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数.
【详解】
根据中心对称的性质,得点关于原点的对称点的坐标为.
故选B.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
8.(2019·湖南中考真题)如图,以点O为位似中心,把放大为原图形的2倍得到,以下说法中错误的是( )
A. B.点C、点O、点C′三点在同一直线上
C. D.
【答案】C
【解析】
【分析】
直接利用位似图形的性质进而分别分析得出答案.
【详解】
∵以点O为位似中心,把放大为原图形的2倍得到,
∴,点C、点O、点C′三点在同一直线上,,
,
∴C选项错误,符合题意.
故选C.
【点睛】
此题主要考查了位似变换,正确把握位似图形的性质是解题关键.
9.(2018·湖南中考真题)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是( )
A.2 B.1 C.4 D.2
【答案】A
【解析】
【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.
【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,
∴C(1,2),则CD的长度是2,
故选A.
【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.
10.(2019·山东中考真题)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到.若反比例函数的图象恰好经过的中点D,则k的值是( )
A.9 B.12 C.15 D.18
【答案】C
【解析】
【分析】
作轴于证明≌,推出,,求出点坐标,再利用中点坐标公式求出点D坐标即可解决问题.
【详解】
解:作轴于.
∵,
∴,,
∴,
∵,
∴,
∴,,
∵点的坐标是,点的坐标是,
∴,,
∴,,
∴,
∴,
∵,
∴,
∵反比例函数的图象经过点,
∴.
故选:C.
【点睛】
本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.
11.(2019·浙江中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN,利用勾股定理即可求得.
【详解】
如图,为剪痕,过点作于.
∵将该图形分成了面积相等的两部分,
∴经过正方形对角线的交点,
∴.
易证,
∴,
而,
∴.
在中, .
故选:D.
【点睛】
本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键.
12.(2019·湖北中考真题)如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时( )
A. B. C. D.
【答案】B
【解析】
【分析】
设BD与AF交于点M.设AB=a,AD=a,根据矩形的性质可得△ABE、△CDE都是等边三角形,利用折叠的性质得到BM垂直平分AF,BF=AB=a,DF=DA=a.解直角△BGM,求出BM,再表示DM,由△ADM∽△GBM,求出a=2,再证明CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.建立平面直角坐标系,得出B(3,2),B′(3,-2),E(0,),利用待定系数法求出直线B′E的解析式,得到H(1,0),然后利用两点间的距离公式求出BH=4,进而求出=.
【详解】
如图,设BD与AF交于点M.设AB=a,AD=a,
∵四边形ABCD是矩形,
∴∠DAB=90°,tan∠ABD=,
∴BD=AC==2a,∠ABD=60°,
∴△ABE、△CDE都是等边三角形,
∴BE=DE=AE=CE=AB=CD=a,
∵将△ABD沿BD折叠,点A的对应点为F,
∴BM垂直平分AF,BF=AB=a,DF=DA=a,
在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,
∴GM=BG=1,BM=GM=,
∴DM=BD-BM=2a-,
∵矩形ABCD中,BC∥AD,
∴△ADM∽△GBM,
∴,即,
∴a=2,
∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4,
易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,
∴△ADF是等边三角形,
∵AC平分∠DAF,
∴AC垂直平分DF,
∴CF=CD=2,
作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.
如图,建立平面直角坐标系,
则A(3,0),B(3,2),B′(3,-2),E(0,),
易求直线B′E的解析式为y=-x+,
∴H(1,0),
∴BH==4,
∴=.
故选:B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH、CF的长是解题的关键.
13.(2019·湖南中考真题)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转后得到正方形,依此方式,绕点O连续旋转2019次得到正方形,那么点的坐标是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据旋转的性质分别求出点A1、A2、A3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.
【详解】
四边形OABC是正方形,且,
,
将正方形OABC绕点O逆时针旋转后得到正方形,
∴点A1的横坐标为1,点A1的纵坐标为1,
,
继续旋转则,,A4(0,-1),A5,A6(-1,0),A7,A8(0,1),A9,……,
发现是8次一循环,所以…余3,
点的坐标为,
故选A.
【点睛】
本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.
14.(2019·江苏中考真题)如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为( )
A. B. C. D.
【答案】B
【解析】
【分析】
连接B′C,作AH⊥B′C′,垂足为H,由已知以及旋转的性质可得AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,继而可求出AH长,B′C′的长,由等腰三角形的性质可得∠AB′C=∠ACB′,再根据∠AB′D=∠ACD=30°,可得∠DB′C=∠DCB′,从而可得B′D=CD,进而可得 B′E=x,由此可得C′E=2-x,再根据三角形面积公式即可求得y与x的关系式,由此即可得到答案.
【详解】
连接B′C,作AH⊥B′C′,垂足为H,
∵AB=AC,∠B=30°,
∴∠C=∠B=30°,
∵△ABC绕点A逆时针旋转α(0<α<120°)得到,
∴AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,
∴AH=AC′=1,
∴C′H=,
∴B′C′=2C′H=2,
∵AB′=AC,
∴∠AB′C=∠ACB′,
∵∠AB′D=∠ACD=30°,
∴∠AB′C-∠AB′D=∠ACB′-∠ACD,
即∠DB′C=∠DCB′,
∴B′D=CD,
∵CD+DE=x,
∴B′D+DE=x,即B′E=x,
∴C′E=B′C′-B′E=2-x,
∴y==×(2-x)×1=,
观察只有B选项的图象符合题意,
故选B.
【点睛】
本题考查的是几何综合题,涉及了旋转的性质,等腰三角形的判定与性质,勾股定理,一次函数的应用等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
15.(2019·辽宁中考真题)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据三角形的滚动,可得出:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上,由点A,B的坐标利用勾股定理可求出AB的长,进而可得出点C2的横坐标,同理可得出点C4,C6的横坐标,根据点的横坐标的变化可找出变化规律“点C2n的横坐标为2n×6(n为正整数)”,再代入2n=100即可求出结论.
【详解】
解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上.
∵A(4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴点C2的横坐标为4+5+3=12=2×6,
同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,
∴点C2n的横坐标为2n×6(n为正整数),
∴点C100的横坐标为100×6=600,
∴点C100的坐标为(600,0).
故选:B.
【点睛】
本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.
二、填空题
16.(2019·湖南中考真题)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是____________..
【答案】90°
【解析】
【分析】
根据旋转角的概念找到∠BOB′是旋转角,从图形中可求出其度数即可.
【详解】
根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,
故答案为:90°.
【点睛】
本题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角.
17.(2019·山东中考真题)如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与点,点与点,点与点是对应点,则_____度.
【答案】90
【解析】
【分析】
先连接,,作,的垂直平分线交于点,连接,,再由题意得到旋转中心,由旋转的性质即可得到答案.
【详解】
如图,连接,,作,的垂直平分线交于点,连接,,
∵,的垂直平分线交于点,
∴点是旋转中心,
∵,
∴旋转角.
故答案为:90.
【点睛】
本题考查旋转,解题的关键是掌握旋转的性质.
18.(2019·海南中考真题)如图,将的斜边AB绕点A顺时针旋转得到AE,直角边AC绕点A逆时针旋转得到AF,连结EF.若,,且,则_____.
【答案】
【解析】
【分析】
由旋转的性质可得,,由勾股定理可求EF的长.
【详解】
解:由旋转的性质可得,,
,且,
故答案为:
【点睛】
本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.
19.(2019·山东中考真题)在平面直角坐标系中,点关于直线的对称点的坐标是_____.
【答案】
【解析】
【分析】
先求出点到直线的距离,再根据对称性求出对称点到直线的距离,从而得到点的横坐标,即可得解.
【详解】
∵点,
∴点到直线的距离为,∴点关于直线的对称点到直线的距离为3,
∴点的横坐标为,
∴对称点的坐标为.
故答案为:.
【点睛】
本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线的距离,从而得到横坐标是解题的关键,作出图形更形象直观.
20.(2019·山东中考真题)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,与是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为_____
【答案】
【解析】
【分析】
根据位似图形的性质“位似图形对应点连线的交点是位似中心”,连接并延长,并延长,与的交点即为位似中心P点,根据相似三角形性质求解.
【详解】
根据位似图形的性质“位似图形对应点连线的交点是位似中心”,
连接并延长,并延长,与的交点即为位似中心P点,由图可知、B、P在一条直线上,则P点横坐标为-3,
由图可得和的位似比为,,
所以,
解得PB=2,
所以P点纵坐标为,
即P点坐标为.
故答案为:
【点睛】
本题主要考查图形的位似变换.找出相似比是关键.
21.(2019·四川中考真题)如图,在中,,,,将绕点逆时针旋转得到,使得点落在上,则的值为_______.
【答案】
【解析】
【分析】
在中,由勾股定理可得.根据旋转性质可得,,,利用线段的和差关系可得.在中根据计算即可.
【详解】
∵在中,AB=5,BC=12,
∴.
∵绕点逆时针旋转得到,
∴,,,
∴CD=AC-AD=8.
在中,.
故答案为:
【点睛】
本题主要考查了旋转的性质以及解直角三角形,难度较小,求出所求三角函数值的直角三角形的对应边长度,根据线段比就可解决问题.
22.(2019·吉林中考真题)如图,在四边形中,.若将沿折叠,点与边的中点恰好重合,则四边形的周长为________.
【答案】20
【解析】
【分析】
根据直角三角形斜边上中线的性质,即可得到DE=BE=AB=5,再根据折叠的性质,即可得到四边形BCDE的周长为5×4=20.
【详解】
解:∵BD⊥AD,点E是AB的中点,
∴DE=BE=AB=5,
由折叠可得,CB=BE,CD=ED,
∴四边形BCDE的周长为5×4=20,
故答案为:20.
【点睛】
本题主要考查了直角三角形的性质及折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
23.(2019·湖南中考真题)如图,已知是等腰三角形,点D在AC边上,将绕点A逆时针旋转45°得到,且点D′、D、B三点在同一条直线上,则的度数是_____.
【答案】22.5°
【解析】
【分析】
由旋转的性质可得,,由等腰三角形的性质可得,,即可求的度数.
【详解】
∵将绕点A逆时针旋转45°得到,
∴,
∴,
∴
故答案为:22.5°
【点睛】
本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
24.(2019·辽宁中考真题)在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_____.
【答案】或
【解析】
【分析】
利用位似图形的性质可得对应点坐标乘以和-即可求解.
【详解】
解:以点为位似中心,相似比为,把缩小,点的坐标是
则点的对应点的坐标为或,即或,
故答案为:或.
【点睛】
本题考查的是位似图形,熟练掌握位似变换是解题的关键.
25.(2019·四川中考真题)如图,在菱形中,,点分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值是_____.
【答案】.
【解析】
【分析】
延长交于点,进而利用翻折变换的性质得出,,,,,再利用菱形的性质得出,,,设,,利用勾股定理得出,再根据三角函数进行计算即可解答
【详解】
延长交于点,
∵将四边形沿翻折,
∴,,,,
∵四边形是菱形
∴,,
∵,
∴设,,
∴,
∴,
∵
∴
∴
∵,
∴
∴
∴
∴,
∴,
∴
故答案为:.
【点睛】
此题考查翻折变换,菱形的性质,三角函数,解题关键在于利用折叠的性质进行解答
26.(2019·四川中考真题)如图,中,,,将绕点C逆时针旋转得到,连接BD,则的值是___.
【答案】
【解析】
【分析】
连接AD,由旋转的性质可得CA=CD,∠ACD=60°,得到△ACD为等边三角形,由AB=BC,CD=AD,得出BD垂直平分AC,于是求出BO=AC=,OD=CD•sin60°=,可得BD=BO+OD,即可求解.
【详解】
如图,连接AD,设AC与BD交于点O,
由题意得:,
∴为等边三角形,
∴,;
∵,,
∴,
∵,,
∴BD垂直平分AC,
∴,,
∴
∴,
故答案为:
【点睛】
本题考查了图形的变换-旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.
27.(2019·黑龙江中考真题)如图将绕点逆时针旋转得到,其中点与是对应点,点与是对应点,点落在边上,连接,若,,,则的长为__________.
【答案】
【解析】
【分析】
由旋转的性质可知,,故,根据勾股定理即可求解.
【详解】
解:∵将绕点逆时针旋转得到,
∴,
∴
∴
故答案为
【点睛】
本题主要考查了旋转的性质,对应角相等,对应线段相等,旋转角相等,以及勾股定理,灵活运用旋转的性质是解题的关键.
28.(2019·湖北中考真题)如图,在平面直角坐标系中,的直角顶点的坐标为 ,点在轴正半轴上,且.将先绕点逆时针旋转,再向左平移3个单位,则变换后点的对应点的坐标为______.
【答案】
【解析】
【分析】
先求出点A的坐标,然后根据旋转的性质求出旋转后点A的对应点的坐标,继而根据平移的性质即可求得答案.
【详解】
∵点的坐标为,,
∴点的坐标为,
如图所示,将先绕点逆时针旋转90°,
则点的坐标为,
再向左平移3个单位长度,则变换后点的对应点坐标为,
故答案为:.
【点睛】本题考查了平移变换、旋转变换,熟练掌握平移的性质以及旋转的性质是解题的关键.
29.(2019·四川中考真题)如图,、都是等腰直角三角形,,,,.将绕点逆时针方向旋转后得,当点恰好落在线段上时,则______.
【答案】
【解析】
【分析】
如图,连接,易求得,,根据旋转的性质得到,,,由全等三角形的性质得到,过作于,解直角三角形即可得到结论.
【详解】
解:如图,连接,
∵、都是等腰直角三角形,,,,,
∴,,
∵将绕点逆时针方向旋转后得,
∴,,,
∴,
∴,
∴,
过作于,
在中,,
在中,,
∴,
故答案为:.
【点睛】
本题考查了旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和解直角三角形等知识,熟练掌握旋转的性质、正确的作出辅助线是解题的关键.
30.(2019·辽宁中考真题)如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE.若AB=2,∠ACB=30°,则线段CD的长度为______.
【答案】2
【解析】
【分析】
连接CE,如图,利用旋转的性质得到AD=AB=2,AE=AC,∠CAE=60°,∠AED=∠ACB=30°,则可判断△ACE为等边三角形,从而得到∠AEC=60°,再判断DE平分∠AEC,根据等腰三角形的性质得到DE垂直平分AC,于是根据线段垂直平分线的性质得DC=DA=2.
【详解】
解:连接CE,如图,
∵△ABC绕点A逆时针旋转60°,得到△ADE,
∴AD=AB=2,AE=AC,∠CAE=60°,∠AED=∠ACB=30°,
∴△ACE为等边三角形,
∴∠AEC=60°,
∴DE平分∠AEC,
∴DE垂直平分AC,
∴DC=DA=2.
故答案为2.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.
31.(2019·辽宁中考真题)如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.
【答案】8
【解析】
【分析】
过点A作于M,由已知得出,得出,由等边三角形的性质得出,,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.
【详解】
过点A作于M,
∵,
∴,
∴,
∵是等边三角形,
∴,
∵,
∴,
∴,
在中,,
当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,
即此时AE取最小值,
在中,,
∴在中,;
故答案为:8.
【点睛】
本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键.
32.(2019·湖北中考真题)问题背景:如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:
问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________
【答案】
【解析】
【分析】
如图,将△MOG绕点M逆时针旋转60°,得到△MPQ,易知△MOP为等边三角形,继而得到点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,由此可以发现当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q作QA⊥NM交NM的延长线于A,利用勾股定理进行求解即可得.
【详解】
如图,将△MOG绕点M逆时针旋转60°,得到△MPQ,
显然△MOP为等边三角形,
∴,OM+OG=OP+PQ,
∴点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,
∴当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,
此时,∠NMQ=75°+60°=135°,
过Q作QA⊥NM交NM的延长线于A,则∠MAQ=90°,
∴∠AMQ=180°-∠NMQ=45°,
∵MQ=MG=4,
∴AQ=AM=MQ•cos45°=4,
∴NQ=,
故答案为:.
【点睛】
本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.
33.(2019·江苏中考真题)如图,过点C(3,4)的直线交轴于点A,∠ABC=90°,AB=CB,曲线过点B,将点A沿轴正方向平移个单位长度恰好落在该曲线上,则的值为________.
【答案】4
【解析】
【分析】
分别过点B、点C作轴和轴的平行线,两条平行线相交于点M,与轴的交点为N.将C(3,4)代入可得b=-2,然后求得A点坐标为(1,0),证明△ABN≌△BCM,可得AN=BM=3,CM=BN=1,可求出B(4,1),即可求出k=4,由A点向上平移后落在上,即可求得a的值.
【详解】
分别过点B、点C作轴和轴的平行线,两条平行线相交于点M,与轴的交点为N,则∠M=∠ANB=90°,
把C(3,4)代入,得4=6+b,解得:b=-2,
所以y=2x-2,
令y=0,则0=2x-2,解得:x=1,
所以A(1,0),
∵∠ABC=90°,
∴∠CBM+∠ABN=90°,
∵∠ANB=90°,
∴∠BAN+∠ABN=90°,
∴∠CBM=∠BAN,
又∵∠M=∠ANB=90°,AB=BC,
∴△ABN≌△BCM,
∴AN=BM,BN=CM,
∵C(3,4),∴设AN=m,CM=n,
则有,解得,
∴ON=3+1=4,BN=1,
∴B(4,1),
∵曲线过点B,
∴k=4,
∴,
∵将点A沿轴正方向平移个单位长度恰好落在该曲线上,此时点A移动后对应点的坐标为(1,a),
∴a=4,
故答案为:4.
【点睛】
本题考查了反比例函数与几何图形的综合,涉及了待定系数法,全等三角形的判定与性质,点的平移等知识,正确添加辅助线,利用数形结合思想灵活运用相关知识是解题的关键.
三、解答题
34.(2019·宁夏中考真题)已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.
(1)画出关于原点成中心对称的,并写出点的坐标;
(2)画出将绕点按顺时针旋转所得的.
【答案】(1)如图所示,即为所求,见解析,点的坐标为;(2)如图所示,即为所求.见解析.
【解析】
【分析】
分别作出三顶点关于原点的对称点,再顺次连接即可得;
分别作出点、绕点按顺时针旋转所得的对应点,再顺次连接即可得.
【详解】
解:(1)如图所示,即为所求,其中点的坐标为.
(2)如图所示,即为所求.
【点睛】
此题主要考查了图形的旋转变换,正确得出对应点位置是解题关键.
35.(2019·湖北中考真题)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图①,四边形ABCD中,AB=AD,B=D,画出四边形ABCD的对称轴m;
(2)如图②,四边形ABCD中,AD∥BC,A=D,画出边BC的垂直平分线n.
【答案】(1)见解析;(2)见解析;
【解析】
【分析】
(1)连接AC,AC所在直线即为对称轴m.
(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.
【详解】
解:(1)如图①,直线即为所求
(2)如图②,直线即为所求
【点睛】
本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.
36.(2019·贵州中考真题)将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.
(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)
(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)
(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)
【答案】(1)结论:S△ABC:S△ADE=1,为定值.理由见解析;(2)S△ABC:S△ADE=,为定值,理由见解析;(3)S△ABC:S△ADE=,为定值.理由见解析.
【解析】
【分析】
(1)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(2)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(3)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
【详解】
(1)结论:S△ABC:S△ADE=定值.
理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.
∵∠BAE=∠CAD=90°,
∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,
∴∠DAE=∠CAG,
∵AB=AE=AD=AC,
∴1.
(2)如图2中,S△ABC:S△ADE=定值.
理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.
不妨设∠ADC=30°,则ADAC,AE=AB,
∵∠BAE=∠CAD=90°,
∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,
∴∠DAE=∠CAG,
∴.
(3)如图3中,如图2中,S△ABC:S△ADE=定值.
理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.
∵∠BAE=∠CAD=90°,
∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,
∴∠DAE=∠CAG,
∵AB=a,AE=b,AC=m,AD=n
∴.
【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的性质,30度的直角三角形的性质,三角形的面积等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
37.(2019·黑龙江中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点、、均在格点上.
(1)画出关于轴对称的,并写出点的坐标;
(2)画出绕原点顺时针旋转后得到的,并写出点的坐标;
(3)在(2)的条件下,求线段在旋转过程中扫过的面积(结果保留).
【答案】(1)(2)(3)
【解析】
【分析】
(1)根据题意,可以画出相应的图形,并写出点的坐标;
(2)根据题意,可以画出相应的图形,并写出点的坐标;
(3)根据题意可以求得OA的长,从而可以求得线段OA在旋转过程中扫过的面积
【详解】
(1)如右图所示,
点的坐标是;
(2)如右图所示,
点的坐标是;
(3)点,
,
线段在旋转过程中扫过的面积是:.
【点睛】
此题考查作图-轴对称变换,作图-旋转变换,扇形面积的计算,解题关键在于掌握作图法则
38.(2019·湖北中考真题)如图1,中,为内一点,将绕点按逆时针方向旋转角得到,点的对应点分别为点,且三点在同一直线上.
(1)填空: (用含的代数式表示);
(2)如图2,若,请补全图形,再过点作于点,然后探究线段之间的数量关系,并证明你的结论;
(3)若,且点满足,直接写出点到的距离.
【答案】(1);(2),理由见解析;(3)或
【解析】
【分析】
(1)由旋转的性质可得,即可求解;
(2)由旋转的性质可得,可证是等边三角形,由等边三角形的性质可得,即可求解;
(3)分点在的上方和的下方两种情况讨论,利用勾股定理可求解.
【详解】
(1)将绕点按逆时针方向旋转角得到
,
故答案为:
(2)
理由如下:如图,
将绕点按逆时针方向旋转角得到
是等边三角形,且
(3)如图,当点在上方时,过点作于点,
点,点,点,点四点共圆
且
,
(不合题意舍去),
若点在的下方,过点作,
同理可得:
点到的距离为或.
【点睛】
本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键.
39.(2019·山东中考真题)如图,和是有公共顶点的等腰直角三角形,.
(1)如图1,连接,,的廷长线交于点,交于点,求证:;
(2)如图2,把绕点顺时针旋转,当点落在上时,连接,,的延长线交于点,若,,求的面积.
【答案】(1)见解析;(2)的面积.
【解析】
【分析】
(1)根据等腰直角三角形的性质得到,,,根据全等三角形的性质得到,根据余角的性质即可得到结论;
(2)根据全等三角形的性质得到,,求得,得到,,求得,,根据相似三角形的性质得到,根据三角形的面积公式即可得到结论.
【详解】
(1)∵和是有公共顶点的等腰直角三角形,,
∴,,,
即,
在与中,,
∴,
∴,
∵,
∴,
∴;
(2)在与中,,
∴,
∴,,
∵,
∴,
∴,
∵,,
∴,,
∴,,
∵,
∴,
∴,
∴,,
∴,
∴的面积.
【点睛】
本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰直角三角形的性质.熟练掌握旋转的性质是解题的关键.
40.(2019·辽宁中考真题)思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是 米.
思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.
①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是 ;
②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;
③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.
【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE,见解析;③PC2=.
【解析】
【分析】
(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB=CD,即可解题.
(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.
②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP(SAS),结合已知得BF=DE=AE,再证明△FBC≌△EAC(SAS),可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.
③作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H点,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,得∠FBC=∠EAC,同②可证可得PC=PE,PC⊥PE,再由已知解三角形得∴EC2=CH2+HE2=,即可求出
【详解】
(1)解:∵CD∥AB,∴∠C=∠B,
在△ABP和△DCP中,
,
∴△ABP≌△DCP(SAS),
∴DC=AB.
∵AB=200米.
∴CD=200米,
故答案为:200.
(2)①PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.
理由如下:如解图1,延长EP交BC于F,
同(1)理,可知∴△FBP≌△EDP(SAS),
∴PF=PE,BF=DE,
又∵AC=BC,AE=DE,
∴FC=EC,
又∵∠ACB=90°,
∴△EFC是等腰直角三角形,
∵EP=FP,
∴PC=PE,PC⊥PE.
②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.
理由如下:如解图2,作BF∥DE,交EP延长线于点F,连接CE、CF,
同①理,可知△FBP≌△EDP(SAS),
∴BF=DE,PE=PF=,
∵DE=AE,
∴BF=AE,
∵当α=90°时,∠EAC=90°,
∴ED∥AC,EA∥BC
∵FB∥AC,∠FBC=90,
∴∠CBF=∠CAE,
在△FBC和△EAC中,
,
∴△FBC≌△EAC(SAS),
∴CF=CE,∠FCB=∠ECA,
∵∠ACB=90°,
∴∠FCE=90°,
∴△FCE是等腰直角三角形,
∵EP=FP,
∴CP⊥EP,CP=EP=.
③如解图3,作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H点,
当α=150°时,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,
∴∠FBC=∠EAC=α=150°
同②可得△FBP≌△EDP(SAS),
同②△FCE是等腰直角三角形,CP⊥EP,CP=EP=,
在Rt△AHE中,∠EAH=30°,AE=DE=1,
∴HE=,AH=,
又∵AC=AB=3,
∴CH=3+,
∴EC2=CH2+HE2=
∴PC2=
【点睛】
本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.
41.(2019·辽宁中考真题)如图,四边形ABCD是正方形,连接AC,将绕点A逆时针旋转α得,连接CF,O为CF的中点,连接OE,OD.
(1)如图1,当时,请直接写出OE与OD的关系(不用证明).
(2)如图2,当时,(1)中的结论是否成立?请说明理由.
(3)当时,若,请直接写出点O经过的路径长.
【答案】(1),,理由见解析;(2)当时,(1)中的结论成立,理由见解析;(3)点O经过的路径长为.
【解析】
【分析】
(1)根据直角三角形斜边上的中线等于斜边一半的性质可得OD与OE的数量关系;根据旋转的性质和正方形的性质可得AC=AF以及△ACF各内角的度数,进一步即可求出∠COE与∠DOF的度数,进而可得OD与OE的位置关系;
(2)延长EO到点M,使,连接DM、CM、DE,如图2所示,先根据SAS证明≌,得,,再根据正方形的性质和旋转的性质推得,进一步在△ACF中根据三角形内角和定理和正方形的性质得出,再一次运用SAS推出≌,于是,进一步即可得出OE、OD的位置关系,然后再运用SAS推出≌,即可得OD与OE的数量关系;
(3)连接AO,如图3所示,先根据等腰三角形三线合一的性质得出,即可判断点O的运动路径,由可得点O经过的路径长,进一步即可求得结果.
【详解】
解:(1),;理由如下:
由旋转的性质得:,,
∵四边形ABCD是正方形,∴,
∴,
∴,
∵,O为CF的中点,∴,
同理:,∴,
∴,,
∴,∴;
(2)当时,(1)中的结论成立,理由如下:
延长EO到点M,使,连接DM、CM、DE,如图2所示:
∵O为CF的中点,∴,
在和中,,
∴≌(SAS),∴,.
∵四边形ABCD是正方形,∴,,
∵绕点A逆时针旋转α得,
∴,,
∴,,
∵,,,
∴,
∵,,∴,
在中,∵,
∴,
∵,∴,∴,
在和中,,
∴≌(SAS),∴,
∵,∴,
在和中,,
∴≌(SAS),∴.
∴,∴,;
(3)连接AO,如图3所示:
∵,,∴,∴,
∴点O在以AC为直径的圆上运动,
∵,∴点O经过的路径长等于以AC为直径的圆的周长,
∵,∴点O经过的路径长为:.
【点睛】
本题是正方形的综合题,综合考查了正方形的性质、旋转的性质、全等三角形的判定与性质、等腰三角形的性质和判断动点运动路径等知识,考查的知识点多、综合性强,倍长中线构造全等三角形、熟知正方形的性质、灵活应用旋转的性质和全等三角形的判定与性质是解(2)题的关键.
中考几何模型压轴题 专题14《共顶点模型》: 这是一份中考几何模型压轴题 专题14《共顶点模型》,共10页。
中考数学突破5讲:中考突破之第四讲 几何变换压轴题 含解析答案: 这是一份中考数学突破5讲:中考突破之第四讲 几何变换压轴题 含解析答案,共13页。试卷主要包含了图形的旋转变换,图形的翻折变换,图形的类比变换等内容,欢迎下载使用。
初中数学中考复习 专题14 几何变换问题(解析版): 这是一份初中数学中考复习 专题14 几何变换问题(解析版),共57页。