


福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
展开福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.二次函数综合题(共3小题)
1.(2022•福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.
(1)求抛物线的解析式;
(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;
(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断+是否存在最大值.若存在,求出最大值;若不存在,请说明理由.
2.(2023•福建)已知抛物线y=ax2+bx+3交x轴于A(1,0),B(3,0)两点,M为抛物线的顶点,C,D为抛物线上不与A,B重合的相异两点,记AB中点为E,直线AD,BC的交点为P.
(1)求抛物线的函数表达式;
(2)若C(4,3),D(m,﹣),且m<2,求证:C,D,E三点共线;
(3)小明研究发现:无论C,D在抛物线上如何运动,只要C,D,E三点共线,△AMP,△MEP,△ABP中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.
3.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
(1)若抛物线过点P(0,1),求a+b的最小值;
(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.
二.全等三角形的判定与性质(共1小题)
4.(2021•福建)如图,在Rt△ABC中,∠ACB=90°.线段EF是由线段AB平移得到的,点F在边BC上,△EFD是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.
(1)求证:∠ADE=∠DFC;
(2)求证:CD=BF.
三.三角形综合题(共1小题)
5.(2022•福建)已知△ABC≌△DEC,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若∠BAD=∠BCD,求∠ADB的度数.
四.正方形的性质(共1小题)
6.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.
(1)求证:DE∥A′F;
(2)求∠GA′B的大小;
(3)求证:A′C=2A′B.
五.相似形综合题(共2小题)
7.(2023•福建)阅读下列材料,回答问题.
任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大宽度AB远大于南北走向的最大宽度,如图1.
工具:一把皮尺(测量长度略小于AB)和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点O处,对其视线可及的P,Q两点,可测得∠POQ的大小,如图3.
小明利用皮尺测量,求出了小水池的最大宽度AB.其测量及求解过程如下:
测量过程:
(ⅰ)在小水池外选点C,如图4,测得AC=am,BC=bm;
(ⅱ)分别在AC,BC上测得CM=m,CN=m;测得MN=cm.
求解过程:
由测量知,AC=a,BC=b,CM=,CN=,
∴==,又∵① ,
∴△CMN∽△CAB,∴.
又∵MN=c,∴AB=② (m).
故小水池的最大宽度为***m.
(1)补全小明求解过程中①②所缺的内容;
(2)小明求得AB用到的几何知识是 ;
(3)小明仅利用皮尺,通过5次测量,求得AB.请你同时利用皮尺和测角仪,通过测量长度、角度等几何量,并利用解直角三角形的知识求小水池的最大宽度AB,写出你的测量及求解过程.
要求:测量得到的长度用字母a,b,c…表示,角度用α,β,γ…表示;测量次数不超过4次(测量的几何量能求出AB,且测量的次数最少,才能得满分).
8.(2023•福建)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.
(1)求证:△ADE∽△FMC;
(2)求∠ABF的度数;
(3)若N是AF的中点,如图2,求证:ND=NO.
六.条形统计图(共1小题)
9.(2022•福建)学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.
调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图.其中A组为0≤t<1,B组为1≤t<2,C组为2≤t<3,D组为3≤t<4,E组为4≤t<5,F组为t≥5.
(1)判断活动前、后两次调查数据的中位数分别落在哪一组;
(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数.
七.列表法与树状图法(共1小题)
10.(2023•福建)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品;若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.
(1)求该顾客首次摸球中奖的概率;
(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由.
福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.二次函数综合题(共3小题)
1.(2022•福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.
(1)求抛物线的解析式;
(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;
(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断+是否存在最大值.若存在,求出最大值;若不存在,请说明理由.
【答案】(1)抛物线的解析式为:y=﹣x2+x.
(2)P(2,)或(3,4).
(3).
【解答】解:(1)将A(4,0),B(1,4)代入y=ax2+bx,
∴,解得.
∴抛物线的解析式为:y=﹣x2+x.
(2)设直线AB的解析式为:y=kx+t,
将A(4,0),B(1,4)代入y=kx+t,
∴,
解得.
∵A(4,0),B(1,4),
∴S△OAB=×4×4=8,
∴S△OAB=2S△PAB=8,即S△PAB=4,
过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,
∴S△PAB=S△PNB+S△PNA=PN×BE+PN×AM=PN=4,
∴PN=.
设点P的横坐标为m,
∴P(m,﹣m2+m)(1<m<4),N(m,﹣m+),
∴PN=﹣m2+m﹣(﹣m+)=.
解得m=2或m=3;
∴P(2,)或(3,4).
(3)∵PD∥OB,
∴∠DPC=∠BOC,∠PDC=∠OBC,
∴△DPC∽△BOC,
∴CP:CO=CD:CB=PD:OB,
∵==,==,
∴+=.
设直线AB交y轴于点F.则F(0,),
过点P作PH⊥x轴,垂足为H,PH交AB于点G,如图,
∵∠PDC=∠OBC,
∴∠PDG=∠OBF,
∵PG∥OF,
∴∠PGD=∠OFB,
∴△PDG∽△OBF,
∴PD:OB=PG:OF,
设P(n,﹣n2+n)(1<n<4),
由(2)可知,PG=﹣n2+n﹣,
∴+===PG=﹣(n﹣)2+.
∵1<n<4,
∴当n=时,+的最大值为.
2.(2023•福建)已知抛物线y=ax2+bx+3交x轴于A(1,0),B(3,0)两点,M为抛物线的顶点,C,D为抛物线上不与A,B重合的相异两点,记AB中点为E,直线AD,BC的交点为P.
(1)求抛物线的函数表达式;
(2)若C(4,3),D(m,﹣),且m<2,求证:C,D,E三点共线;
(3)小明研究发现:无论C,D在抛物线上如何运动,只要C,D,E三点共线,△AMP,△MEP,△ABP中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.
【答案】(1)y=x2﹣4x+3;
(2)证明见解析部分;
(3)△ABP的面积为定值,其面积为2.
【解答】(1)解:因为抛物线 y=ax2+bx+3 经过点A(1,0),B(3,0),
所以 ,
解得,
所以抛物线的函数表达式为y=x2﹣4x+3;
(2)证明:设直线CE对应的函数表达式为 y=kx+n(k≠0),
因为E为AB中点,所以E(2,0).
又因为C(4,3),
所以,解得 ,
所以直线CE对应的函数表达式为 .
因为点 在抛物线上,所以 .
解得, 或 .
又因为m<2,所以 ,
所以 .
因为 ,即 满足直线CE对应的函数表达式,
所以点D在直线CE上,即C,D,E三点共线;
(3)△ABP的面积为定值,其面积为2.
理由如下:(考生不必写出下列理由)
如图1,当C,D分别运动到点 C'D'的位置时,C,D'与D,C'分别关于直线EM对称,此时仍有 C'D',E三点共线.
设 AD'与 BC'的交点为P′,则P,P′关于直线EM对称,即 PP'∥x 轴.
此时,PP'与AM不平行,且AM不平分线段 PP',
故P,P'到直线AM的距离不相等,即在此情形下△AMP 与△AMP'的面积不相等,
所以△AMP 的面积不为定值.
如图2,当 C,D 分别运动到点 C1D1 的位置,且保持 C1D1,E三点共线.此时AD1 与 BC1 的交点 P1 到直线EM的距离小于P到直线EM的距离,
所以△MEP1的面积小于△MEP的面积,故△MEP 的面积不为定值.
又因为△AMP,△MEP,△ABP 中存在面积为定值的三角形,故△ABP 的面积为定值.
在(2)的条件下,∵B(3,0),C(4,3),D(,﹣),
∴直线BC对应的函数表达式为 y=3x﹣9;直线AD对应的函数表达式为 ,
由,解得,
∴,此时△ABP 的面积为2.
3.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
(1)若抛物线过点P(0,1),求a+b的最小值;
(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.
【答案】见试题解答内容
【解答】解:(1)把P(0,1)代入解析式得:c=1,
∴y=ax2+bx+1,
又∵抛物线与x轴只有一个公共点,
∴△=b2﹣4a=0,即,
∴,
当b=﹣2时,a+b有最小值为﹣1;
(2)①∵抛物线与x轴只有一个公共点,
∴抛物线上的顶点在x轴上,
∴抛物线上的点为P1,P3,
又∵P1,P3关于y轴对称,
∴顶点为原点(0,0),
设解析式为y=ax2,
代入点P1得:,
②证明:
联立直线l和抛物线得:
,
即:x2﹣4kx﹣4=0,
设M(x1,kx1+1),N(x2,kx2+1),
由韦达定理得:x1+x2=4k,x1x2=﹣4,
设线段MN的中点为T,设A的坐标为(m,﹣1),
则T的坐标为(2k,2k2+1),
∴AT2=(2k﹣m)2+(2k2+2)2,
由题意得:,
∵△MAN是直角三角形,且MN是斜边,
∴,即:,
∴×16(k4+2k2+1)=(2k﹣m)2+(2k2+2)2,
解得m=2k,
∴A(2k,﹣1),
∴B(2k,k2),
∴C(2k,2k2+1),
∵,
∴B是AC的中点,
∴AB=BC,
又∵△MAB与△MBC的高都是点M到直线AC的距离,
∴△MAB与△MBC的高相等,
∴△MAB与△MBC的面积相等.
二.全等三角形的判定与性质(共1小题)
4.(2021•福建)如图,在Rt△ABC中,∠ACB=90°.线段EF是由线段AB平移得到的,点F在边BC上,△EFD是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.
(1)求证:∠ADE=∠DFC;
(2)求证:CD=BF.
【答案】见解析.
【解答】(1)证明:∵∠ACB=90°,
∴∠ACB=∠CDF+∠DFC=90°,
∵△EFD是以EF为斜边的等腰直角三角形,
∴∠EDF=90°,DE=FD,
∵∠EDF=∠ADE+∠CDF=90°,
∴∠ADE=∠DFC;
(2)
连接AE,
∵线段EF是由线段AB平移得到的,
∴EF∥AB,EF=AB,
∴四边形ABFE是平行四边形,
∴AE∥BC,AE=BF,
∴∠DAE=∠BCA=90°,
∴∠DAE=∠FCD,
在△ADE和△CFD中,
,
∴△ADE≌△CFD(AAS),
∴AE=CD,
∵AE=BF,
∴CD=BF.
三.三角形综合题(共1小题)
5.(2022•福建)已知△ABC≌△DEC,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若∠BAD=∠BCD,求∠ADB的度数.
【答案】(1)证明见解答过程;
(2)∠ACE+∠EFC=180°,理由见解答过程;
(3)30°.
【解答】(1)证明:∵△ABC≌△DEC,
∴AC=DC,
∵AB=AC,
∴∠ABC=∠ACB,AB=DC,
∵CB平分∠ACD,
∴∠DCB=∠ACB,
∴∠ABC=∠DCB,
∴AB∥CD,
∴四边形ABDC为平行四边形,
∵AB=AC,
∴平行四边形ABDC为菱形;
(2)解:∠ACE+∠EFC=180°,
理由如下:∵△ABC≌△DEC,
∴∠ABC=∠DEC,
∴∠ACB=∠DEC,
∵∠ACB+∠ACF=∠DEC+∠CEF=180°,
∴∠CEF=∠ACF,
∵∠CEF+∠ECF+∠EFC=180°,
∴∠ACF+∠ECF+∠EFC=180°,
∴∠ACE+∠EFC=180°;
(3)解:如图3,在AD上取点M,使AM=BC,连接BM,
在△AMB和△CBD中,
,
∴△AMB≌△CBD(SAS),
∴BM=BD,∠ABM=∠CDB,
∴∠BMD=∠BDM,
∵∠BMD=∠BAD+∠MBA,
∴∠ADB=∠BCD+∠BDC,
设∠BCD=∠BAD=α,∠BDC=β,则∠ADB=α+β,
∵CA=CD,
∴∠CAD=∠CDA=α+2β,
∴∠BAC=∠CAD﹣∠BAD=2β,
∴∠ACB=×(180°﹣2β)=90°﹣β,
∴∠ACD=90°﹣β+α,
∵∠ACD+∠CAD+∠CDA=180°,
∴90°﹣β+α+α+2β+α+2β=180°,
∴α+β=30°,即∠ADB=30°.
四.正方形的性质(共1小题)
6.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.
(1)求证:DE∥A′F;
(2)求∠GA′B的大小;
(3)求证:A′C=2A′B.
【答案】(1)证明见解析过程;
(2)45°;
(3)证明见解析过程.
【解答】证明:(1)如图,设AG与DE的交点为O,连接GF,
∵点A关于DE的对称点为A′,
∴AO=A'O,AA'⊥DE,
∵E,F为边AB上的两个三等分点,
∴AE=EF=BF,
∴OE是△AA'F的中位线,
∴DE∥A'F;
(2)∵AA'⊥DE,
∴∠AOE=90°=∠DAE=∠ABG,
∴∠ADE+∠DEA=90°=∠DEA+∠EAO,
∴∠ADE=∠EAO,
在△ADE和△BAG中,
,
∴△ADE≌△BAG(ASA),
∴AE=BG,
∴BF=BG,
∴∠GFB=∠FGB=45°,
∵∠FA'G=∠FBG=90°,
∴点F,点B,点G,点A'四点共圆,
∴∠GA'B=∠GFB=45°;
(3)设AE=EF=BF=BG=a,
∴AD=BC=3a,FG=a,
∴CG=2a,
在Rt△ADE中,DE===a=AG,
∵sin∠EAO=sin∠ADE,
∴,
∴,
∴OE=a,
∴AO===a=A'O,
∴A'G=a,
∵AO=A'O,AE=EF,
∴A'F=a=a,
∵∠FA'G=∠FBG=90°,
∴∠A'FB+∠A'GB=180°,
∵∠A'GC+∠A'GB=180°,
∴∠A'FB=∠A'GC,
又∵==,
∴△A'FB∽△A'GC,
∴,
∴A′C=2A′B.
五.相似形综合题(共2小题)
7.(2023•福建)阅读下列材料,回答问题.
任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大宽度AB远大于南北走向的最大宽度,如图1.
工具:一把皮尺(测量长度略小于AB)和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点O处,对其视线可及的P,Q两点,可测得∠POQ的大小,如图3.
小明利用皮尺测量,求出了小水池的最大宽度AB.其测量及求解过程如下:
测量过程:
(ⅰ)在小水池外选点C,如图4,测得AC=am,BC=bm;
(ⅱ)分别在AC,BC上测得CM=m,CN=m;测得MN=cm.
求解过程:
由测量知,AC=a,BC=b,CM=,CN=,
∴==,又∵① ∠C=∠C ,
∴△CMN∽△CAB,∴.
又∵MN=c,∴AB=② 3c (m).
故小水池的最大宽度为***m.
(1)补全小明求解过程中①②所缺的内容;
(2)小明求得AB用到的几何知识是 相似三角形的判定和性质 ;
(3)小明仅利用皮尺,通过5次测量,求得AB.请你同时利用皮尺和测角仪,通过测量长度、角度等几何量,并利用解直角三角形的知识求小水池的最大宽度AB,写出你的测量及求解过程.
要求:测量得到的长度用字母a,b,c…表示,角度用α,β,γ…表示;测量次数不超过4次(测量的几何量能求出AB,且测量的次数最少,才能得满分).
【答案】(1)∠C=∠C; ②3c;
(2)相似三角形的判定与性质;
(3)见解析部分.
【解答】解:(1)①由测量知,AC=a,BC=b,CM=,CN=,
∴==,
又∵∠C=∠C,
∴△CMN∽△CAB,
∴.
又∵MN=c,
∴AB=3c(m).
故答案为:∠C=∠C; ②3c;
(2)求得AB用到的几何知识是:相似三角形的判定和性质.
故答案为:相似三角形的判定与性质;
(3)测量过程:(i)在小水池外选点C,如图,用测角仪在点B处测得∠ABC=α,在点A处测得∠BAC=β;
(ii)用皮尺测得 BC=am.
求解过程:由测量知,在△ABC中,∠ABC=α,∠BAC=β,BC=a.
过点C作 CD⊥AB,垂足为D.
在Rt△CBD中,,
即 ,所以BD=acosα.
同理,CD=asinα.
在Rt△ACD中,,
即 ,所以 ,
所以 .
故小水池的最大宽度为 .
8.(2023•福建)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.
(1)求证:△ADE∽△FMC;
(2)求∠ABF的度数;
(3)若N是AF的中点,如图2,求证:ND=NO.
【答案】(1)证明见解答过程;
(2)∠ABF=135°;
(3)证明见解答过程.
【解答】(1)证明:如图:
∵DF是由线段DC绕点D顺时针旋转 90° 得到的,
∴∠FDC=90°,FD=CD,∠DFC=45°,
∵AB=AC,AO⊥BC,
∴.
∵∠BAC=90°,
∴∠BAO=∠ABC=45°,
∴∠BAO=∠DFC,
∵∠EDA+∠ADM=90°,∠M+∠ADM=90°
∴∠EDA=∠M,
∴△ADE∽△FMC;
(2)解:设BC与DF的交点为I,如图:
∵∠DBI=∠CFI=45°,∠BID=∠FIC,
∴△BID∽△FIC,
∴,即,
∵∠BIF=∠DIC,
∴△BIF∽△DIC,
∴∠IBF=∠IDC,
∵∠IDC=90°,
∴∠IBF=90°,
∵∠ABC=45°,
∴∠ABF=∠ABC+∠IBF=135°;
(3)证明:延长ON交BF于点T,连接DT,DO,如图:
∵∠FBI=∠BOA=90°,
∴BF∥AO,
∴∠FTN=∠AON.
∵N是AF的中点,
∴AN=NF,
∵∠TNF=∠ONA,
∴△TNF≌△ONA(AAS),
∴NT=NO,FT=AO,
∵∠BAC=90°,AB=AC,AO⊥BC,
∴AO=CO,
∴FT=CO,
由(2)知,△BIF∽△DIC,
∴∠DFT=∠DCO.
∵DF=DC,
∴△DFT≌△DCO(SAS),
∴DT=DO,∠FDT=∠CDO,
∴∠FDT+∠FDO=∠CDO+∠FDO,即∠ODT=∠CDF,
∵∠CDF=90°,
∴∠ODT=∠CDF=90°,
∴.
六.条形统计图(共1小题)
9.(2022•福建)学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.
调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图.其中A组为0≤t<1,B组为1≤t<2,C组为2≤t<3,D组为3≤t<4,E组为4≤t<5,F组为t≥5.
(1)判断活动前、后两次调查数据的中位数分别落在哪一组;
(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数.
【答案】(1)第1次中位数在C组,第2次中位数在D组;
(2)1400.
【解答】解:(1)把第1次调查的50名学生课外劳动时间从小到大排列,处在中间位置的两个数,
即处在第25、第26位的两个数都落在C组,
因此第1次调查学生课外劳动时间中位数在C组;
把第2次调查的50名学生课外劳动时间从小到大排列各个分组,计算所占百分比的和,
和为50%和52%的都在D组,
因此第2次调查学生课外劳动时间的中位数在D组;
(2)2000×(30%+24%+16%)=1400(人),
答:该校学生一周的课外劳动时间不小于3h的人数大约是1400人.
七.列表法与树状图法(共1小题)
10.(2023•福建)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品;若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.
(1)求该顾客首次摸球中奖的概率;
(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由.
【答案】(1)顾客首次摸球中奖的概率为 ;
(2)他应往袋中加入黄球.
【解答】解:(1)顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果,
记“首次摸得红球”为事件A,则事件A发生的结果只有1种,
∴,
∴顾客首次摸球中奖的概率为 ;
(2)他应往袋中加入黄球;理由如下:
记往袋中加入的球为“新”,摸得的两球所有可能的结果列表如下:
红
黄①
黄②
黄③
新
红
红,黄①
红,黄②
红,黄③
红,新
黄①
黄①,红
黄①,黄②
黄①,黄③
黄①,新
黄②
黄②,红
黄②,黄①
黄②,黄③
黄②,新
黄③
黄③,红
黄③,黄①
黄③,黄②
黄③,新
新
新,红
新,黄①
新,黄②
新,黄③
共有20种等可能结果,
(i)若往袋中加入的是红球,两球颜色相同的结果共有8种,此时该顾客获得精美礼品的概率 ;
(i)若往袋中加入的是黄球,两球颜色相同的结果共有12种,此时该顾客获得精美礼品的概率 ;
∵,
∴P1<P2,
∴他应往袋中加入黄球.
陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。
青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。
天津市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案): 这是一份天津市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共28页。试卷主要包含了和点B,,顶点为D,参考数据等内容,欢迎下载使用。