终身会员
搜索
    上传资料 赚现金
    福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
    立即下载
    加入资料篮
    福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)01
    福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)02
    福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

    展开
    这是一份福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共27页。试卷主要包含了两点,判断+是否存在最大值,阅读下列材料,回答问题等内容,欢迎下载使用。

    福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    一.二次函数综合题(共3小题)
    1.(2022•福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.
    (1)求抛物线的解析式;
    (2)若△OAB面积是△PAB面积的2倍,求点P的坐标;
    (3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断+是否存在最大值.若存在,求出最大值;若不存在,请说明理由.

    2.(2023•福建)已知抛物线y=ax2+bx+3交x轴于A(1,0),B(3,0)两点,M为抛物线的顶点,C,D为抛物线上不与A,B重合的相异两点,记AB中点为E,直线AD,BC的交点为P.
    (1)求抛物线的函数表达式;
    (2)若C(4,3),D(m,﹣),且m<2,求证:C,D,E三点共线;
    (3)小明研究发现:无论C,D在抛物线上如何运动,只要C,D,E三点共线,△AMP,△MEP,△ABP中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.
    3.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
    (1)若抛物线过点P(0,1),求a+b的最小值;
    (2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
    ①求抛物线的解析式;
    ②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.
    二.全等三角形的判定与性质(共1小题)
    4.(2021•福建)如图,在Rt△ABC中,∠ACB=90°.线段EF是由线段AB平移得到的,点F在边BC上,△EFD是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.
    (1)求证:∠ADE=∠DFC;
    (2)求证:CD=BF.

    三.三角形综合题(共1小题)
    5.(2022•福建)已知△ABC≌△DEC,AB=AC,AB>BC.
    (1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
    (2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
    (3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若∠BAD=∠BCD,求∠ADB的度数.


    四.正方形的性质(共1小题)
    6.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.
    (1)求证:DE∥A′F;
    (2)求∠GA′B的大小;
    (3)求证:A′C=2A′B.

    五.相似形综合题(共2小题)
    7.(2023•福建)阅读下列材料,回答问题.
    任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大宽度AB远大于南北走向的最大宽度,如图1.
    工具:一把皮尺(测量长度略小于AB)和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点O处,对其视线可及的P,Q两点,可测得∠POQ的大小,如图3.
    小明利用皮尺测量,求出了小水池的最大宽度AB.其测量及求解过程如下:
    测量过程:
    (ⅰ)在小水池外选点C,如图4,测得AC=am,BC=bm;
    (ⅱ)分别在AC,BC上测得CM=m,CN=m;测得MN=cm.
    求解过程:
    由测量知,AC=a,BC=b,CM=,CN=,
    ∴==,又∵①   ,
    ∴△CMN∽△CAB,∴.
    又∵MN=c,∴AB=②   (m).
    故小水池的最大宽度为***m.

    (1)补全小明求解过程中①②所缺的内容;
    (2)小明求得AB用到的几何知识是    ;
    (3)小明仅利用皮尺,通过5次测量,求得AB.请你同时利用皮尺和测角仪,通过测量长度、角度等几何量,并利用解直角三角形的知识求小水池的最大宽度AB,写出你的测量及求解过程.
    要求:测量得到的长度用字母a,b,c…表示,角度用α,β,γ…表示;测量次数不超过4次(测量的几何量能求出AB,且测量的次数最少,才能得满分).
    8.(2023•福建)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.

    (1)求证:△ADE∽△FMC;
    (2)求∠ABF的度数;
    (3)若N是AF的中点,如图2,求证:ND=NO.
    六.条形统计图(共1小题)
    9.(2022•福建)学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.
    调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图.其中A组为0≤t<1,B组为1≤t<2,C组为2≤t<3,D组为3≤t<4,E组为4≤t<5,F组为t≥5.

    (1)判断活动前、后两次调查数据的中位数分别落在哪一组;
    (2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数.
    七.列表法与树状图法(共1小题)
    10.(2023•福建)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品;若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.
    (1)求该顾客首次摸球中奖的概率;
    (2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由.

    福建省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    参考答案与试题解析
    一.二次函数综合题(共3小题)
    1.(2022•福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.
    (1)求抛物线的解析式;
    (2)若△OAB面积是△PAB面积的2倍,求点P的坐标;
    (3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断+是否存在最大值.若存在,求出最大值;若不存在,请说明理由.

    【答案】(1)抛物线的解析式为:y=﹣x2+x.
    (2)P(2,)或(3,4).
    (3).
    【解答】解:(1)将A(4,0),B(1,4)代入y=ax2+bx,
    ∴,解得.
    ∴抛物线的解析式为:y=﹣x2+x.
    (2)设直线AB的解析式为:y=kx+t,
    将A(4,0),B(1,4)代入y=kx+t,
    ∴,
    解得.
    ∵A(4,0),B(1,4),
    ∴S△OAB=×4×4=8,
    ∴S△OAB=2S△PAB=8,即S△PAB=4,
    过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,

    ∴S△PAB=S△PNB+S△PNA=PN×BE+PN×AM=PN=4,
    ∴PN=.
    设点P的横坐标为m,
    ∴P(m,﹣m2+m)(1<m<4),N(m,﹣m+),
    ∴PN=﹣m2+m﹣(﹣m+)=.
    解得m=2或m=3;
    ∴P(2,)或(3,4).
    (3)∵PD∥OB,
    ∴∠DPC=∠BOC,∠PDC=∠OBC,
    ∴△DPC∽△BOC,
    ∴CP:CO=CD:CB=PD:OB,
    ∵==,==,
    ∴+=.
    设直线AB交y轴于点F.则F(0,),
    过点P作PH⊥x轴,垂足为H,PH交AB于点G,如图,

    ∵∠PDC=∠OBC,
    ∴∠PDG=∠OBF,
    ∵PG∥OF,
    ∴∠PGD=∠OFB,
    ∴△PDG∽△OBF,
    ∴PD:OB=PG:OF,
    设P(n,﹣n2+n)(1<n<4),
    由(2)可知,PG=﹣n2+n﹣,
    ∴+===PG=﹣(n﹣)2+.
    ∵1<n<4,
    ∴当n=时,+的最大值为.
    2.(2023•福建)已知抛物线y=ax2+bx+3交x轴于A(1,0),B(3,0)两点,M为抛物线的顶点,C,D为抛物线上不与A,B重合的相异两点,记AB中点为E,直线AD,BC的交点为P.
    (1)求抛物线的函数表达式;
    (2)若C(4,3),D(m,﹣),且m<2,求证:C,D,E三点共线;
    (3)小明研究发现:无论C,D在抛物线上如何运动,只要C,D,E三点共线,△AMP,△MEP,△ABP中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.
    【答案】(1)y=x2﹣4x+3;
    (2)证明见解析部分;
    (3)△ABP的面积为定值,其面积为2.
    【解答】(1)解:因为抛物线 y=ax2+bx+3 经过点A(1,0),B(3,0),
    所以 ,
    解得,
    所以抛物线的函数表达式为y=x2﹣4x+3;

    (2)证明:设直线CE对应的函数表达式为 y=kx+n(k≠0),
    因为E为AB中点,所以E(2,0).
    又因为C(4,3),
    所以,解得 ,
    所以直线CE对应的函数表达式为 .
    因为点 在抛物线上,所以 .
    解得, 或 .
    又因为m<2,所以 ,
    所以 .
    因为 ,即 满足直线CE对应的函数表达式,
    所以点D在直线CE上,即C,D,E三点共线;

    (3)△ABP的面积为定值,其面积为2.
    理由如下:(考生不必写出下列理由)
    如图1,当C,D分别运动到点 C'D'的位置时,C,D'与D,C'分别关于直线EM对称,此时仍有 C'D',E三点共线.
    设 AD'与 BC'的交点为P′,则P,P′关于直线EM对称,即 PP'∥x 轴.
    此时,PP'与AM不平行,且AM不平分线段 PP',
    故P,P'到直线AM的距离不相等,即在此情形下△AMP 与△AMP'的面积不相等,
    所以△AMP 的面积不为定值.

    如图2,当 C,D 分别运动到点 C1D1 的位置,且保持 C1D1,E三点共线.此时AD1 与 BC1 的交点 P1 到直线EM的距离小于P到直线EM的距离,
    所以△MEP1的面积小于△MEP的面积,故△MEP 的面积不为定值.
    又因为△AMP,△MEP,△ABP 中存在面积为定值的三角形,故△ABP 的面积为定值.
    在(2)的条件下,∵B(3,0),C(4,3),D(,﹣),
    ∴直线BC对应的函数表达式为 y=3x﹣9;直线AD对应的函数表达式为 ,
    由,解得,
    ∴,此时△ABP 的面积为2.
    3.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
    (1)若抛物线过点P(0,1),求a+b的最小值;
    (2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
    ①求抛物线的解析式;
    ②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.
    【答案】见试题解答内容
    【解答】解:(1)把P(0,1)代入解析式得:c=1,
    ∴y=ax2+bx+1,
    又∵抛物线与x轴只有一个公共点,
    ∴△=b2﹣4a=0,即,
    ∴,
    当b=﹣2时,a+b有最小值为﹣1;
    (2)①∵抛物线与x轴只有一个公共点,
    ∴抛物线上的顶点在x轴上,
    ∴抛物线上的点为P1,P3,
    又∵P1,P3关于y轴对称,
    ∴顶点为原点(0,0),
    设解析式为y=ax2,
    代入点P1得:,
    ②证明:
    联立直线l和抛物线得:

    即:x2﹣4kx﹣4=0,
    设M(x1,kx1+1),N(x2,kx2+1),
    由韦达定理得:x1+x2=4k,x1x2=﹣4,
    设线段MN的中点为T,设A的坐标为(m,﹣1),
    则T的坐标为(2k,2k2+1),
    ∴AT2=(2k﹣m)2+(2k2+2)2,
    由题意得:,
    ∵△MAN是直角三角形,且MN是斜边,
    ∴,即:,
    ∴×16(k4+2k2+1)=(2k﹣m)2+(2k2+2)2,
    解得m=2k,
    ∴A(2k,﹣1),
    ∴B(2k,k2),
    ∴C(2k,2k2+1),
    ∵,
    ∴B是AC的中点,
    ∴AB=BC,
    又∵△MAB与△MBC的高都是点M到直线AC的距离,
    ∴△MAB与△MBC的高相等,
    ∴△MAB与△MBC的面积相等.
    二.全等三角形的判定与性质(共1小题)
    4.(2021•福建)如图,在Rt△ABC中,∠ACB=90°.线段EF是由线段AB平移得到的,点F在边BC上,△EFD是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.
    (1)求证:∠ADE=∠DFC;
    (2)求证:CD=BF.

    【答案】见解析.
    【解答】(1)证明:∵∠ACB=90°,
    ∴∠ACB=∠CDF+∠DFC=90°,
    ∵△EFD是以EF为斜边的等腰直角三角形,
    ∴∠EDF=90°,DE=FD,
    ∵∠EDF=∠ADE+∠CDF=90°,
    ∴∠ADE=∠DFC;
    (2)

    连接AE,
    ∵线段EF是由线段AB平移得到的,
    ∴EF∥AB,EF=AB,
    ∴四边形ABFE是平行四边形,
    ∴AE∥BC,AE=BF,
    ∴∠DAE=∠BCA=90°,
    ∴∠DAE=∠FCD,
    在△ADE和△CFD中,

    ∴△ADE≌△CFD(AAS),
    ∴AE=CD,
    ∵AE=BF,
    ∴CD=BF.
    三.三角形综合题(共1小题)
    5.(2022•福建)已知△ABC≌△DEC,AB=AC,AB>BC.
    (1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
    (2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
    (3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若∠BAD=∠BCD,求∠ADB的度数.


    【答案】(1)证明见解答过程;
    (2)∠ACE+∠EFC=180°,理由见解答过程;
    (3)30°.
    【解答】(1)证明:∵△ABC≌△DEC,
    ∴AC=DC,
    ∵AB=AC,
    ∴∠ABC=∠ACB,AB=DC,
    ∵CB平分∠ACD,
    ∴∠DCB=∠ACB,
    ∴∠ABC=∠DCB,
    ∴AB∥CD,
    ∴四边形ABDC为平行四边形,
    ∵AB=AC,
    ∴平行四边形ABDC为菱形;
    (2)解:∠ACE+∠EFC=180°,
    理由如下:∵△ABC≌△DEC,
    ∴∠ABC=∠DEC,
    ∴∠ACB=∠DEC,
    ∵∠ACB+∠ACF=∠DEC+∠CEF=180°,
    ∴∠CEF=∠ACF,
    ∵∠CEF+∠ECF+∠EFC=180°,
    ∴∠ACF+∠ECF+∠EFC=180°,
    ∴∠ACE+∠EFC=180°;
    (3)解:如图3,在AD上取点M,使AM=BC,连接BM,
    在△AMB和△CBD中,

    ∴△AMB≌△CBD(SAS),
    ∴BM=BD,∠ABM=∠CDB,
    ∴∠BMD=∠BDM,
    ∵∠BMD=∠BAD+∠MBA,
    ∴∠ADB=∠BCD+∠BDC,
    设∠BCD=∠BAD=α,∠BDC=β,则∠ADB=α+β,
    ∵CA=CD,
    ∴∠CAD=∠CDA=α+2β,
    ∴∠BAC=∠CAD﹣∠BAD=2β,
    ∴∠ACB=×(180°﹣2β)=90°﹣β,
    ∴∠ACD=90°﹣β+α,
    ∵∠ACD+∠CAD+∠CDA=180°,
    ∴90°﹣β+α+α+2β+α+2β=180°,
    ∴α+β=30°,即∠ADB=30°.

    四.正方形的性质(共1小题)
    6.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.
    (1)求证:DE∥A′F;
    (2)求∠GA′B的大小;
    (3)求证:A′C=2A′B.

    【答案】(1)证明见解析过程;
    (2)45°;
    (3)证明见解析过程.
    【解答】证明:(1)如图,设AG与DE的交点为O,连接GF,

    ∵点A关于DE的对称点为A′,
    ∴AO=A'O,AA'⊥DE,
    ∵E,F为边AB上的两个三等分点,
    ∴AE=EF=BF,
    ∴OE是△AA'F的中位线,
    ∴DE∥A'F;
    (2)∵AA'⊥DE,
    ∴∠AOE=90°=∠DAE=∠ABG,
    ∴∠ADE+∠DEA=90°=∠DEA+∠EAO,
    ∴∠ADE=∠EAO,
    在△ADE和△BAG中,

    ∴△ADE≌△BAG(ASA),
    ∴AE=BG,
    ∴BF=BG,
    ∴∠GFB=∠FGB=45°,
    ∵∠FA'G=∠FBG=90°,
    ∴点F,点B,点G,点A'四点共圆,
    ∴∠GA'B=∠GFB=45°;
    (3)设AE=EF=BF=BG=a,
    ∴AD=BC=3a,FG=a,
    ∴CG=2a,
    在Rt△ADE中,DE===a=AG,
    ∵sin∠EAO=sin∠ADE,
    ∴,
    ∴,
    ∴OE=a,
    ∴AO===a=A'O,
    ∴A'G=a,
    ∵AO=A'O,AE=EF,
    ∴A'F=a=a,
    ∵∠FA'G=∠FBG=90°,
    ∴∠A'FB+∠A'GB=180°,
    ∵∠A'GC+∠A'GB=180°,
    ∴∠A'FB=∠A'GC,
    又∵==,
    ∴△A'FB∽△A'GC,
    ∴,
    ∴A′C=2A′B.
    五.相似形综合题(共2小题)
    7.(2023•福建)阅读下列材料,回答问题.
    任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大宽度AB远大于南北走向的最大宽度,如图1.
    工具:一把皮尺(测量长度略小于AB)和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点O处,对其视线可及的P,Q两点,可测得∠POQ的大小,如图3.
    小明利用皮尺测量,求出了小水池的最大宽度AB.其测量及求解过程如下:
    测量过程:
    (ⅰ)在小水池外选点C,如图4,测得AC=am,BC=bm;
    (ⅱ)分别在AC,BC上测得CM=m,CN=m;测得MN=cm.
    求解过程:
    由测量知,AC=a,BC=b,CM=,CN=,
    ∴==,又∵① ∠C=∠C ,
    ∴△CMN∽△CAB,∴.
    又∵MN=c,∴AB=② 3c (m).
    故小水池的最大宽度为***m.

    (1)补全小明求解过程中①②所缺的内容;
    (2)小明求得AB用到的几何知识是  相似三角形的判定和性质 ;
    (3)小明仅利用皮尺,通过5次测量,求得AB.请你同时利用皮尺和测角仪,通过测量长度、角度等几何量,并利用解直角三角形的知识求小水池的最大宽度AB,写出你的测量及求解过程.
    要求:测量得到的长度用字母a,b,c…表示,角度用α,β,γ…表示;测量次数不超过4次(测量的几何量能求出AB,且测量的次数最少,才能得满分).
    【答案】(1)∠C=∠C; ②3c;
    (2)相似三角形的判定与性质;
    (3)见解析部分.
    【解答】解:(1)①由测量知,AC=a,BC=b,CM=,CN=,
    ∴==,
    又∵∠C=∠C,
    ∴△CMN∽△CAB,
    ∴.
    又∵MN=c,
    ∴AB=3c(m).
    故答案为:∠C=∠C; ②3c;

    (2)求得AB用到的几何知识是:相似三角形的判定和性质.
    故答案为:相似三角形的判定与性质;

    (3)测量过程:(i)在小水池外选点C,如图,用测角仪在点B处测得∠ABC=α,在点A处测得∠BAC=β;
    (ii)用皮尺测得 BC=am.

    求解过程:由测量知,在△ABC中,∠ABC=α,∠BAC=β,BC=a.
    过点C作 CD⊥AB,垂足为D.
    在Rt△CBD中,,
    即 ,所以BD=acosα.
    同理,CD=asinα.
    在Rt△ACD中,,
    即 ,所以 ,
    所以 .
    故小水池的最大宽度为 .
    8.(2023•福建)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.

    (1)求证:△ADE∽△FMC;
    (2)求∠ABF的度数;
    (3)若N是AF的中点,如图2,求证:ND=NO.
    【答案】(1)证明见解答过程;
    (2)∠ABF=135°;
    (3)证明见解答过程.
    【解答】(1)证明:如图:

    ∵DF是由线段DC绕点D顺时针旋转 90° 得到的,
    ∴∠FDC=90°,FD=CD,∠DFC=45°,
    ∵AB=AC,AO⊥BC,
    ∴.
    ∵∠BAC=90°,
    ∴∠BAO=∠ABC=45°,
    ∴∠BAO=∠DFC,
    ∵∠EDA+∠ADM=90°,∠M+∠ADM=90°
    ∴∠EDA=∠M,
    ∴△ADE∽△FMC;
    (2)解:设BC与DF的交点为I,如图:

    ∵∠DBI=∠CFI=45°,∠BID=∠FIC,
    ∴△BID∽△FIC,
    ∴,即,
    ∵∠BIF=∠DIC,
    ∴△BIF∽△DIC,
    ∴∠IBF=∠IDC,
    ∵∠IDC=90°,
    ∴∠IBF=90°,
    ∵∠ABC=45°,
    ∴∠ABF=∠ABC+∠IBF=135°;
    (3)证明:延长ON交BF于点T,连接DT,DO,如图:

    ∵∠FBI=∠BOA=90°,
    ∴BF∥AO,
    ∴∠FTN=∠AON.
    ∵N是AF的中点,
    ∴AN=NF,
    ∵∠TNF=∠ONA,
    ∴△TNF≌△ONA(AAS),
    ∴NT=NO,FT=AO,
    ∵∠BAC=90°,AB=AC,AO⊥BC,
    ∴AO=CO,
    ∴FT=CO,
    由(2)知,△BIF∽△DIC,
    ∴∠DFT=∠DCO.
    ∵DF=DC,
    ∴△DFT≌△DCO(SAS),
    ∴DT=DO,∠FDT=∠CDO,
    ∴∠FDT+∠FDO=∠CDO+∠FDO,即∠ODT=∠CDF,
    ∵∠CDF=90°,
    ∴∠ODT=∠CDF=90°,
    ∴.
    六.条形统计图(共1小题)
    9.(2022•福建)学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.
    调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图.其中A组为0≤t<1,B组为1≤t<2,C组为2≤t<3,D组为3≤t<4,E组为4≤t<5,F组为t≥5.

    (1)判断活动前、后两次调查数据的中位数分别落在哪一组;
    (2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数.
    【答案】(1)第1次中位数在C组,第2次中位数在D组;
    (2)1400.
    【解答】解:(1)把第1次调查的50名学生课外劳动时间从小到大排列,处在中间位置的两个数,
    即处在第25、第26位的两个数都落在C组,
    因此第1次调查学生课外劳动时间中位数在C组;
    把第2次调查的50名学生课外劳动时间从小到大排列各个分组,计算所占百分比的和,
    和为50%和52%的都在D组,
    因此第2次调查学生课外劳动时间的中位数在D组;
    (2)2000×(30%+24%+16%)=1400(人),
    答:该校学生一周的课外劳动时间不小于3h的人数大约是1400人.
    七.列表法与树状图法(共1小题)
    10.(2023•福建)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品;若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.
    (1)求该顾客首次摸球中奖的概率;
    (2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由.
    【答案】(1)顾客首次摸球中奖的概率为 ;
    (2)他应往袋中加入黄球.
    【解答】解:(1)顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果,
    记“首次摸得红球”为事件A,则事件A发生的结果只有1种,
    ∴,
    ∴顾客首次摸球中奖的概率为 ;
    (2)他应往袋中加入黄球;理由如下:
    记往袋中加入的球为“新”,摸得的两球所有可能的结果列表如下:


    黄①
    黄②
    黄③



    红,黄①
    红,黄②
    红,黄③
    红,新
    黄①
    黄①,红

    黄①,黄②
    黄①,黄③
    黄①,新
    黄②
    黄②,红
    黄②,黄①

    黄②,黄③
    黄②,新
    黄③
    黄③,红
    黄③,黄①
    黄③,黄②

    黄③,新

    新,红
    新,黄①
    新,黄②
    新,黄③

    共有20种等可能结果,
    (i)若往袋中加入的是红球,两球颜色相同的结果共有8种,此时该顾客获得精美礼品的概率 ;
    (i)若往袋中加入的是黄球,两球颜色相同的结果共有12种,此时该顾客获得精美礼品的概率 ;
    ∵,
    ∴P1<P2,
    ∴他应往袋中加入黄球.

    相关试卷

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。

    青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。

    天津市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案): 这是一份天津市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共28页。试卷主要包含了和点B,,顶点为D,参考数据等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map