终身会员
搜索
    上传资料 赚现金
    2022-2023学年北京市人大附中高二数学期末复习参考试题(三)含答案
    立即下载
    加入资料篮
    2022-2023学年北京市人大附中高二数学期末复习参考试题(三)含答案01
    2022-2023学年北京市人大附中高二数学期末复习参考试题(三)含答案02
    2022-2023学年北京市人大附中高二数学期末复习参考试题(三)含答案03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年北京市人大附中高二数学期末复习参考试题(三)含答案

    展开
    这是一份2022-2023学年北京市人大附中高二数学期末复习参考试题(三)含答案,共13页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。

    2022-2023学年北京市人大附中高二数学期末复习参考试题(三)

     

    一、单选题

    1.已知集合A=,B={−2,0,1,2},(  )

    A{0,1} B{−1,0,1}

    C{−2,0,1,2} D{−1,0,1,2}

    【答案】A

    【详解】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.

    详解:

    因此AB=,选A.

    点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.

    2.若集合,则    

    A B C D

    【答案】A

    【分析】根据集合的交集运算,即可求得答案.

    【详解】由题意集合

    ,

    故选:A

    3已知全集,集合,则

    A B

    C D

    【答案】C

    【详解】因为,所以,故选:C

    【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或Venn图进行处理.

    4.已知集合,则

    A B

    C D

    【答案】C

    【详解】试题分析:由,得,选C.

    【解析】集合的交集运算.

    【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合三者是不同的.

    2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽略互异性而出错.

    3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图;对连续的数集间的运算,常利用数轴;对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.

    4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽略空集是任何集合的子集.

     

    5.已知集合,则

    A B C D

    【答案】C

    【详解】试题分析:由题意得,,故选C.

    【解析】集合的交集运算

    【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合三者是不同的.

    2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽略互异性而出错.

    3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图;对连续的数集间的运算,常利用数轴;对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.

    4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽略空集是任何集合的子集.

     

    6.若集合,则

    A B

    C D

    【答案】A

    【详解】在数轴上将集合AB表示出来,如图所示,

      

    由交集的定义可得,为图中阴影部分,即,故选A.

    【解析】集合的交集运算.

     

    7.已知集合,则

    A B C D

    【答案】C

    【详解】试题分析:集合,所以,故选C.

    【解析】交集的运算,容易题.

     

    8.设集合,集合,则    

    A B

    C D

    【答案】A

    【分析】由题意逐一考查所给的选项运算结果是否为即可.

    【详解】由题意可得,则,选项A正确;

    ,则,选项B错误;

    ,则,选项C错误;

    ,则,选项D错误;

    故选:A.

    9.已知集合,则    

    A B

    C D

    【答案】B

    【分析】利用交集的定义可求得集合.

    【详解】因为集合,则.

    故选:B.

    10.已知集合,则=

    A B C D

    【答案】D

    【详解】试题分析:,所以,故选D.

    【解析】集合的运算

     

     

    二、填空题

    11能说明fx>f0)对任意的x02]都成立,则fx)在[02]上是增函数为假命题的一个函数是         

    【答案】y=sinx(答案不唯一)

    【详解】分析:举的反例要否定增函数,可以取一个分段函数,使得fx>f0)且(02]上是减函数.

    详解:令,则fx>f0)对任意的x02]都成立,但fx)在[02]上不是增函数.

    又如,令fx=sinx,则f0=0fx>f0)对任意的x02]都成立,但fx)在[02]上不是增函数.

    点睛:要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.通常举分段函数.

    12.能够说明是任意实数,,是假命题的一组整数的值依次为          .

    【答案】

    【详解】试题分析:,矛盾,所以−1−2−3可验证该命题是假命题.

     

    【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.

     

    三、单选题

    13.已知数列的前n项和为,则为常数列的(    

    A.充分不必要条件 B.必要不充分条件

    C.充分必要条件 D.既不充分也不必要条件

    【答案】C

    【分析】利用常数列、数列前n项和的意义,结合充分条件、必要条件的定义判断作答.

    【详解】数列为常数列,则

    ,则当时,,即

    ,因此,,数列为常数列,

    所以为常数列的充分必要条件.

    故选:C

    14成等差数列

    A.充分不必要条件 B.必要不充分条件

    C.充要条件 D.既不充分也不必要条件

    【答案】A

    【详解】成等差数列 , ,1,3,3,5不成等差数列,所以

    成等差数列的充分不必要条件,A.

    点睛:充分、必要条件的三种判断方法.

    1.定义法:直接判断的真假.并注意和图示相结合,例如为真,则的充分条件.

    2.等价法:利用与非与非与非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.

    3.集合法:若,则的充分条件或的必要条件;若,则的充要条件.

    15.数列的通项公式为,为递增数列

    A.充分而不必要条件 B.必要而不充分条件

    C.充要条件 D.既不充分也不必要条件

    【答案】A

    【详解】因为 ,

    ,则恒成立,所以为递增数列;

    为递增数列,,即

    亦即,所以

    所以为递增数列的充分而不必要条件.

    故选:A.

    【点睛】本题主要考查充分条件,必要条件的定义的应用,以及数列的单调性的应用,属于基础题.

    充分不必要条件、必要不充分条件、既不充分也不必要条件的判断的一般方法:充分不必要条件:如果,且,则说pq的充分不必要条件;必要不充分条件:如果,且,则说pq的必要不充分条件;既不充分也不必要条件:如果,且,则说pq的既不充分也不必要条件.

    16.已知数列满足(),则数列为等差数列的(    

    A.充分不必要条件 B.必要不充分条件

    C.充要条件 D.既不充分也不必要条件

    【答案】A

    【分析】先根据等差数列定义证明充分性成立,再举反例说明必要性不成立.

    【详解】时,,所以数列为公差为1的等差数列,即充分性成立;

    ,所以若数列为等差数列,则,即必要性不成立,

    综上,数列为等差数列的充分不必要条件,

    故选A

    【点睛】本题考查等差数列定义以及充要关系判定,考查基本分析化简求证能力,属中档题.

    17.已知是等差数列的前n项和,且,有下列四个命题,假命题的是(    

    A.公差 B.在所有中,最大

    C.满足n的个数有11 D

    【答案】C

    【分析】根据题设条件可判断数列是递减数列,这样可判断A是否正确;

    根据最大,可判断数列从第七项开始变为负的,可判断D的正确性:利用等差数列的前n项和公式与等差数列的性质,可判断的符号,这样就可判断BC是否正确.

    【详解】等差数列中,最大,且A正确;

    D正确;,

    的值当递增,当递减,前12项和为正,当时为负.

    B正确;满足n的个数有12个,故C错误.

    故选C

    【点睛】本题考查等差数列的前n项和的最值在等差数列中,存在最大值的条件是:

    ;存在最小值的条件是:

    18.设,则

    A.充分而不必要条件 B.必要而不充分条件

    C.充要条件 D.既不充分也不必要条件

    【答案】D

    【详解】,则,故不充分;若,则,而,故不必要,故选D.

    【解析】本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.

     

    19.设,则(    

    A.若,则

    B.若,则

    C.若,则

    D.若,则

    【答案】A

    【分析】构造函数 并结合函数的单调性判断的大小.

    【详解】

    因为,所以上单调递增.

    又由

    A正确,B错误;

     ,因为

    所以函数上先减再增,不单调,

    ,则

    然而上不单调,故大小不能确定,都有可能,故CD错误;

    故选:A

     

    四、填空题

    20.比较下列各数的大小:

    1,则m        n.

    2 ,则a        b.

    3)已知,试比较abc的大小     

    【答案】     >     <    

    【分析】1)分类讨论时,两种情况

    2)将化为分子相同的两种格式,比较分母大小即可;

    3)先判断abc的正负,然后结合基本不等式和不等式的性质求解;

    【详解】1)当时,所以,即

    时,所以,即;综上

    2又因为,所以

    3)因为

    又因为,所以

    因为当且仅当时等号成立,

    所以与条件矛盾,故

    所以

    所以

    综上可知

    故答案为: ><

     

    五、单选题

    21.如果函数在区间上单调递减,则mn的最大值为

    A16 B18 C25 D

    【答案】B

    【详解】时,抛物线的对称轴为.据题意,当时,...时,抛物线开口向下,据题意得,..,故应舍去.要使得取得最大值,应有.所以,所以最大值为18.B..

    【解析】函数与不等式的综合应用.

     

    22.设,若,则下列关系式中正确的是

    A B

    C D

    【答案】C

    【详解】,函数上单调递增,因为,所以,所以,故选C

    【考点定位】1、基本不等式;2、基本初等函数的单调性.

     

    23.设表示不超过的最大整数.若存在实数,使得同时成立,则正整数的最大值是

    A3 B4 C5 D6

    【答案】B

    【详解】因为表示不超过的最大整数.由

    ,所以

    所以

    所以

    ,与矛盾,

    故正整数的最大值是4

    【解析】函数的值域,不等式的性质.

     

    24.记方程,方程,方程,其中是正实数.当成等比数列时,下列选项中,能推出方程无实根的是

    A.方程有实根,且有实根 B.方程有实根,且无实根

    C.方程无实根,且有实根 D.方程无实根,且无实根

    【答案】B

    【详解】当方程有实根,且无实根时,,从而即方程无实根,选B.A,D由于不等式方向不一致,不可推;C推出有实根

    【解析】不等式性质

     

    六、填空题

    25.设a0,b0. 若关于x,y的方程组无解,则的取值范围是

    【答案】

    【详解】试题分析:方程组无解等价于直线与直线平行,所以.又为正数,所以),即取值范围是

    【解析】方程组的思想以及基本不等式的应用.

    26.设,则的最大值为             

    【答案】1

    【分析】换元取,结合二次函数运算求解,注意.

    【详解】,得:,且

    所以

    ,即时,取到最大值为1.

    故答案为:1.

    27.若xyaR,且恒成立,则a的最小值是   

    【答案】

    【分析】将不等式两边平方,后分离参数.再利用基本不等式即可找到a的最小值.

    【详解】恒成立,

    ,解得a.a的最小值是

    故答案为:.

    【点睛】本题考查利用基本不等式找参数的最值,属于中档题.恒成立问题求参数的取值范围,常用分离参数转化为函数最值问题求解.

    28.已知两正数xy满足xy1,则的最小值为        .

    【答案】 / /

    【分析】将目标函数变形为,令,根据的单调性求出最小值.

    【详解】

    =

    =

    =

    ,则

    因为,所以

    所以,所以

    所以上单调递减,

    上单调递减,故当有最小值

    即:有最小值

    故答案为:

     

    相关试卷

    2023-2024学年北京市人大附中高二上学期期中数学试题含答案: 这是一份2023-2024学年北京市人大附中高二上学期期中数学试题含答案,共24页。试卷主要包含了单选题,填空题,问答题,证明题等内容,欢迎下载使用。

    2022-2023学年北京市人大附中高二数学期末复习参考试题(二)含答案: 这是一份2022-2023学年北京市人大附中高二数学期末复习参考试题(二)含答案,共21页。试卷主要包含了单选题,填空题,双空题等内容,欢迎下载使用。

    2022-2023学年北京市人大附中高二数学期末复习参考试题含答案: 这是一份2022-2023学年北京市人大附中高二数学期末复习参考试题含答案,共32页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map