年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学九上24.1.4 圆周角(课件+教案++练习)

    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      24.1.4 圆周角.pptx
    • 课件
      24.1.4 圆周角(课件PPT).pptx
    • 教案
      【教学设计】 圆周角定理.doc
    • 教案
      【教学设计】 圆内接四边形.doc
    • 练习
      24.1.4 圆周角(同步练习).docx
    • 24.1.4圆周角教学详案.docx
    • 视频
      圆内接四边形.swf
    • 视频
      圆周角定理及其推论.swf
    24.1.4 圆周角第1页
    24.1.4 圆周角第2页
    24.1.4 圆周角第3页
    24.1.4 圆周角第4页
    24.1.4 圆周角第5页
    24.1.4 圆周角第6页
    24.1.4 圆周角第7页
    24.1.4 圆周角第8页
    24.1.4 圆周角(课件PPT)第1页
    24.1.4 圆周角(课件PPT)第2页
    24.1.4 圆周角(课件PPT)第3页
    24.1.4 圆周角(课件PPT)第4页
    24.1.4 圆周角(课件PPT)第5页
    24.1.4 圆周角(课件PPT)第6页
    24.1.4 圆周角(课件PPT)第7页
    24.1.4 圆周角(课件PPT)第8页
    【教学设计】 圆周角定理第1页
    【教学设计】 圆周角定理第2页
    【教学设计】 圆周角定理第3页
    【教学设计】  圆内接四边形第1页
    24.1.4 圆周角(同步练习)第1页
    24.1.4圆周角教学详案第1页
    24.1.4圆周角教学详案第2页
    当前文件暂不支持在线预览,请下载使用
    当前文件暂不支持在线预览,请下载使用
    还剩25页未读, 继续阅读
    下载需要35学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.4 圆周角完美版课件ppt

    展开

    这是一份初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.4 圆周角完美版课件ppt,文件包含2414圆周角pptx、2414圆周角课件PPTpptx、教学设计圆周角定理doc、教学设计圆内接四边形doc、2414圆周角同步练习docx、2414圆周角教学详案docx、圆内接四边形swf、圆周角定理及其推论swf等8份课件配套教学资源,其中PPT共59页, 欢迎下载使用。
    24.1.5  圆内接四边形1. 知识结构 2. 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3. 教法建议 本节内容需要一个课时. (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究; (2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法. 一、教学目标  (一)知识目标 (1)了解圆内接多边形和多边形外接圆的概念; (2)掌握圆内接四边形的概念及其性质定理; (3)熟练运用圆内接四边形的性质进行计算和证明. (二)能力目标 (1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力; (2)通过定理的证明探讨过程,促进学生的发散思维; (3)通过定理的应用,进一步提高学生的应用能力和思维能力. (三)情感目标 (1)充分发挥学生的主体作用,激发学生的探究的热情; (2)渗透教学内容中普遍存在的相互联系、相互转化的观点. 二、教学重点和难点: 重点:圆内接四边形的性质定理. 难点:定理的灵活运用. 三、教学过程 设计 (一)基本概念 如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆. (二)创设研究情境 问题:一般的圆内接四边形具有什么性质? 研究:圆的特殊内接四边形(矩形、正方形、等腰梯形) 教师组织、引导学生研究. 1、边的性质: (1)矩形:对边相等,对边平行. (2)正方形:对边相等,对边平行,邻边相等. (3)等腰梯形:两腰相等,有一组对边平行. 归纳:圆内接四边形的边之间看不出存在什么公同的性质. 2、角的关系 猜想:圆内接四边形的对角互补. (三)证明猜想 教师引导学生证明.(参看思路) 思路1:在矩形中,外接圆心即为它的对角线的中点,∠A与∠B均为平角∠BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢? ∠A=,∠C= ∴∠A+∠C= 思路2:在正方形中,外接圆心即为它的对角线的交点.把圆心与各顶点相连,与各边所成的角均方45°的角.在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢? 这时有2(α+β+γ+δ)=360° 所以  α+β+γ+δ=180°     β+γ=∠A,α+δ=∠C, ∴∠A+∠C=180°,可得,圆内接四边形的对角互补. (四)性质及应用 定理:的对角互补,并且任意一个外角等于它的内对角. (对A层学生应知,逆定理成立, 4点共圆)   已知:如图,⊙O1与⊙O2相交于A、B两点,经过A的直线与⊙O1交于点C,与⊙O2交于点D.过B的直线与⊙O1交于点E,与⊙O2交于点F. 求证:CE∥DF. (分析与证明学生自主完成) 说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决. ②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新. 巩固练习:教材P98中1、2. (五)小结 知识:圆内接多边形——圆内接四边形——圆内接四边形的性质. 思想方法:①“特殊——一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变. (六)作业 :教材P101中15、16、17题;教材P102中B组5题. 探究活动 问题: 已知,点A在⊙O上,⊙A与⊙O相交于B、C两点,点D是⊙A上(不与B、C重合)一点,直线BD与⊙O相交于点E.试问:当点D在⊙A上运动时,能否判定△CED的形状?说明理由. 分析  要判定△CED的形状,当运动到BD经过⊙A的圆心A时,此时点E与点A重合,可以发现△CED是等腰三角形,从而猜想对一般情况是否也能成立,进一步观察可发现在运动过程中∠D及∠CED的大小保持不变,△CED的形状保持不变. 提示:分两种情况 (1)当点D在⊙O外时.证明△CDE∽△CAD’即可 (2)当点D在⊙O内时. 利用圆内接四边形外角等于内对角可证明△CDE∽△CAD’即可 说明:(1)本题应用同弧所对的圆周角相等,及圆内接四边形外角等于内对角,改变圆周角顶点位置,进行角的转换; (2)本题为图形形状判定型的探索题,结论的探索同样运用图形运动思想,证明结论将一般位置转化成特殊位置,同时获得添辅助线的方法,这也是添辅助线的常用的思想方法; (3)一般地,有时对几种不同位置图形探索得到相同结论,但不同位置的证明方法不同时,也要进行分类讨论.本题中,如果将直线BD运动到使点E在BD的反向延长线上时,
    △CDE仍然是等腰三角形. 

    相关课件

    初中人教版24.1.4 圆周角说课ppt课件:

    这是一份初中人教版24.1.4 圆周角说课ppt课件,共18页。PPT课件主要包含了学习目标,圆周角定理的推导,针对训练等内容,欢迎下载使用。

    数学九年级上册24.1.4 圆周角背景图课件ppt:

    这是一份数学九年级上册24.1.4 圆周角背景图课件ppt,共18页。PPT课件主要包含了合作探究,知识点一,知识点二,∠ACB,∠AOB,∠A∠C,精炼提升,知识点三,COA,同弧或等弧等内容,欢迎下载使用。

    人教版七年级上册4.3.1 角教学ppt课件:

    这是一份人教版七年级上册4.3.1 角教学ppt课件,共20页。PPT课件主要包含了知识回顾,创设情境引入新知,自主预习,自主探究,角的表示,知识梳理,随堂练习,填一填等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map