2024年中考数学重难点题型之二次函数专题16 二次函数与正方形存在性问题(原卷版)
展开这是一份2024年中考数学重难点题型之二次函数专题16 二次函数与正方形存在性问题(原卷版),共19页。试卷主要包含了,与轴交于点,抛物线的顶点为,如图,已知抛物线经过,,三点等内容,欢迎下载使用。
2024年中考数学重难点题型之二次函数专题16 二次函数与正方形存在性问题
解题点拨
作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:
(1)有一个角为直角的菱形;
(2)有一组邻边相等的矩形;
(3)对角线互相垂直平分且相等的四边形.
依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.
从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).
比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.
从动点角度来说,关于正方形存在性问题可分为:
(1)2个定点+2个全动点;
(2)1个定点+2个半动点+1个全动点;
甚至可以有:(3)4个半动点.
不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!
常用处理方法:
思路1:从判定出发
若已知菱形,则加有一个角为直角或对角线相等;
若已知矩形,则加有一组邻边相等或对角线互相垂直;
若已知对角线互相垂直或平分或相等,则加上其他条件.
思路2:构造三垂直全等
若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.
总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.
正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.
例:在平面直角坐标系中,A(1,1),B(4,3),在平面中求C、D使得以A、B、C、D为顶点的四边形是正方形.
如图,一共6个这样的点C使得以A、B、C为顶点的三角形是等腰直角三角形.
至于具体求点坐标,以为例,构造△AMB≌△,即可求得坐标.至于像、这两个点的坐标,不难发现,是或的中点,是或的中点.
题无定法,具体问题还需具体分析,如上仅仅是大致思路.
直击中考
1.如图,二次函数的图象与轴交于,,与轴交于点.
(1)求该二次函数的解析式及点的坐标;
(2)点为抛物线上一点,过作轴交直线于点,点为轴上一点,点为坐标系内一点,当以点,,,为顶点的四边形是正方形时,直接写出点的坐标.
2.如图,在平面直角坐标系中,二次函数的图象与直线交于、两点,,,其中点是抛物线的顶点,交y轴于点.
(1)求二次函数解析式;
(2)点是抛物线第三象限上一点(不与点、重合),连接,以为边作正方形,当顶点或恰好落在抛物线对称轴上时,直接写出对应的点的坐标.
3.(2022·海南·统考中考真题)如图1,抛物线经过点,并交x轴于另一点B,点在第一象限的抛物线上,交直线于点D.
(1)求该抛物线的函数表达式;
(2)当点P的坐标为时,求四边形的面积;
(3)点Q在抛物线上,当的值最大且是直角三角形时,求点Q的横坐标;
(4)如图2,作交x轴于点,点H在射线上,且,过的中点K作轴,交抛物线于点I,连接,以为边作出如图所示正方形,当顶点M恰好落在y轴上时,请直接写出点G的坐标.
4.(2022·山东泰安·统考中考真题)若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.
(1)求二次函数的表达式;
(2)若点M在直线上,且在第四象限,过点M作轴于点N.
①若点N在线段上,且,求点M的坐标;
②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.
5.(2020·辽宁锦州·中考真题)在平面直角坐标系中,抛物线交x轴于两点,交y轴于点C.
(1)求抛物线的表达式;
(2)如图,直线与抛物线交于A,D两点,与直线于点E.若是线段上的动点,过点M作x轴的垂线,交抛物线于点F,交直线于点G,交直线于点H.
①当点F在直线上方的抛物线上,且时,求m的值;
②在平面内是否在点P,使四边形为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
6.(2020秋·辽宁沈阳·九年级统考期末)如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),与轴交于点,抛物线的顶点为.直线与抛物线交于,两点.
(1)求抛物线的表达式;
(2)用配方法求顶点的坐标;
(3)点是对称轴右侧抛物线上任意一点,设点的横坐标为.
①过点作轴的垂线,垂足为,交直线于点,当时,请直接写出点坐标;
②连接,以为边作正方形,是否存在点使点恰好落在对称轴上?若存在,请直接写出点的坐标;若不存在,请说明理由.
7.如图,直线与抛物线交于A,B两点,其中点B的坐标是
(1)求直线及抛物线的解析式;
(2)C为抛物线上的一点,的面积为3,求点C的坐标;
(3)P在抛物线上,Q在直线上,M在坐标平面内,当以A,P,Q,M为顶点的四边形为正方形时,直接写出点M的坐标.
8.如图,抛物线与x轴交于,D两点,与y轴交于点B,抛物线的对称轴与x轴交于点,点E,P为抛物线的对称轴上的动点.
(1)求该抛物线的解析式;
(2)当最小时,求此时点E的坐标;
(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.
9.如图,在平面直角坐标系中,二次函数的图像与x轴交于点,,与y轴交于点C.
(1)______,______;
(2)若点P是该抛物线对称轴上的一点,点Q为坐标平面内一点,那么在抛物线上且位于x轴上方是否存在点M,使四边形为正方形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
10.(2022秋·湖南·九年级校考期末)如图,已知抛物线经过,,三点.
(1)求抛物线的解析式;
(2)连接BC,点D是线段BC上方抛物线上一点,过点D作,交x轴于点E,连接AD交BC于点F,当取得最小值时,求点D的横坐标;
(3)点G为抛物线的顶点,抛物线对称轴与x轴交于点H,连接GB,点M是抛物线上的动点,设点M的横坐标为m.
①当时,求点M的坐标;
②过点M作轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,求m的值.
11.(2022秋·浙江·九年级专题练习)如图,在平面直角坐标系.xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(﹣2,0).
(1)求抛物线解析式;
(2)如图1,点F是直线AB下方抛物线上一动点,连接FA,FB,求出四边形FAOB面积最大值及此时点F的坐标.
(3)如图2,在(2)问的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内任意一点M使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.
12.综合与探究
如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C,且,点F是直线AB下方抛物线上的动点,连接FA,FB.
(1)求抛物线解析式;
(2)当点F与抛物线的顶点重合时,的面积为______;.
(3)求四边形FAOB面积的最大值及此时点F的坐标.
(4)在(3)的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内另一点M,使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.
13.(2022·辽宁沈阳·统考二模)如图,在平面直角坐标系中,二次函数的图象交y轴于点D,直线AB与之相交,且是抛物线的顶点.
(1)b=______,c=______;
(2)如图1,点P是第四象限抛物线上一点,且满足,抛物线交x轴于点C,连接PC.
①求直线PB的解析式;
②求PC的长;
(3)如图2,点Q是抛物线第三象限上一点(不与点B、D重合),连接BQ,以BQ为边作正方形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.
14.(2022·四川成都·统考一模)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.
(1)b=______,c=______;
(2)若点D为第四象限内抛物线上的一个动点,过点D作DE∥y轴交BC于点E,过点D作DF⊥BC于点F,过点F作FG⊥y轴于点G,求出DE+FG的最大值及此时点D的坐标;
(3)若点P是该抛物线对称轴上的一点,点Q为坐标平面内一点,那么在抛物线上且位于x轴上方是否存在点M,使四边形OMPQ为正方形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
15.(2022秋·浙江·九年级专题练习)如图,在平面直角坐标系中,已知抛物线与x轴交于点A(1,0),B(5,0)两点,与y轴交于点C,点D为抛物线的顶点.
(1)求抛物线的解析式和点D的坐标;
(2)求△BCD的面积;
(3)点M为抛物线上一动点,点N为平面内一点,以A,M,I,N为顶点作正方形,是否存在点M,使点I恰好落在对称轴上?若存在,直接写出点M的坐标;若不存在,请说明理由.
16.(2022秋·浙江·九年级专题练习)直线与轴相交于点,与轴相交于点,抛物线经过点,,与轴的另一个交点为.
(1)求抛物线的解析式;
(2)点是第一象限内抛物线上的一个动点,过点作轴交于点,于点,轴于点.
①如图1,当点为抛物线顶点时,求长.
②如图2,当时,求点的坐标;
(3)如图3,在(2)②的条件下,直线与相交于点,点在抛物线上,过作轴,交直线于点.是平面内一点,当以点,,,为顶点的四边形是正方形时,请直接写出点的坐标.
相关试卷
这是一份中考数学压轴题之学霸秘笈大揭秘(全国通用)专题09二次函数与正方形存在性问题(全国通用)(原卷版+解析),共88页。试卷主要包含了示例等内容,欢迎下载使用。
这是一份2024年中考数学重难点题型之二次函数专题16 二次函数与正方形存在性问题(解析版),共63页。试卷主要包含了,与轴交于点,抛物线的顶点为,如图,已知抛物线经过,,三点等内容,欢迎下载使用。
这是一份初中数学中考复习 专题16二次函数的存在性问题(原卷版),共19页。