终身会员
搜索
    上传资料 赚现金

    2023新教材高中数学第2章平面解析几何2.8直线与圆锥曲线的位置关系对点练新人教B版选择性必修第一册

    立即下载
    加入资料篮
    2023新教材高中数学第2章平面解析几何2.8直线与圆锥曲线的位置关系对点练新人教B版选择性必修第一册第1页
    2023新教材高中数学第2章平面解析几何2.8直线与圆锥曲线的位置关系对点练新人教B版选择性必修第一册第2页
    2023新教材高中数学第2章平面解析几何2.8直线与圆锥曲线的位置关系对点练新人教B版选择性必修第一册第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学选择性必修 第一册2.8 直线与圆锥曲线的位置关系课时作业

    展开

    这是一份数学选择性必修 第一册2.8 直线与圆锥曲线的位置关系课时作业,共9页。


    2.8 直线与圆锥曲线的位置关系

    知识点一  直线与圆锥曲线的位置关系

    1.已知直线lxy-3=0,椭圆y2=1,则直线与椭圆的位置关系是(  )

    A.相交   B.相切

    C.相离   D.相切或相交

    答案 C

    解析 xy-3=0代入y2=1得+(3-x)2=1,即5x2-24x+32=0.Δ=242-4×5×32=-64<0,直线与椭圆相离.故选C.

    2.若直线ykx+2与椭圆=1相切,则斜率k的值是(  )

    A.          B.-         C.±        D.±

    答案 C

    解析 ykx+2代入=1得,(3k2+2)x2+12kx+6=0,因为直线与椭圆相切,所以Δ=(12k)2-4(3k2+2)×6=0,解得k=±.故选C.

    3.已知双曲线方程为x2=1,过P(1,0)的直线l与双曲线只有一个公共点,则l的条数为(  )

    A.4            B.3            C.2            D.1

    答案 B

    解析 由双曲线的方程知,点P(1,0)为双曲线的一个顶点,过点P(1,0)有一条直线l与双曲线相切,有两条直线与渐近线平行,这三条直线与双曲线只有一个公共点.

    4.设离心率为e的双曲线C=1(a>0,b>0)的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线C的左、右两支相交的充要条件是(  )

    A.k2e2>1   B.k2e2<1

    C.e2k2>1   D.e2k2<1

    答案 C

    解析 直线l与双曲线C的左、右两支相交的充要条件是直线l的斜率-<k<,所以k2<e2-1,即e2k2>1.

    5.过点(2,4)作直线与抛物线y2=8x只有一个公共点,这样的直线有(  )

    A.1条            B.2条            C.3条            D.4条

    答案 B

    解析 由题意知,点(2,4)在抛物线y2=8x上,所以过点(2,4)与抛物线y2=8x只有一个公共点的直线有两条,一条是抛物线的切线,另一条与抛物线的对称轴平行.故选B.

    6.(多选)已知抛物线x2=2py(p>0)的焦点为F,过点F的直线l交抛物线于AB两点,以线段AB为直径的圆交x轴于MN两点,设线段AB的中点为Q,若抛物线C上存在一点E(t,2)到焦点F的距离等于3,则下列说法正确的是(  )

    A.抛物线的方程是x2=2y

    B.抛物线的准线方程是y=-1

    C.sinQMN的最小值是

    D.线段AB的最小值是6

    答案 BC

    解析 抛物线Cx2=2py(p>0)的焦点为F0,,准线方程为y=-,由点E(t,2)到焦点F的距离等于3,可得2+=3,解得p=2,则抛物线C的方程为x2=4y,A不正确;抛物线的准线方程为y=-1,B正确;由题知直线l的斜率存在,F(0,1),设A(x1y1),B(x2y2),直线l的方程为ykx+1,由消去yx2-4kx-4=0,所以x1x2=4kx1x2=-4,所以y1y2k(x1x2)+2=4k2+2,所以AB的中点Q的坐标为(2k,2k2+1),|AB|=y1y2p=4k2+2+2=4k2+4,所以圆Q的半径为r=2k2+2,在等腰QMN中,sinQMN=1-≥1-,当且仅当k=0时取等号,所以sinQMN的最小值为,C正确;|AB|=4k2+4≥4,D不正确.故选BC.

    7.若直线ly=(a+1)x-1与曲线Cy2ax(a≠0)恰好有一个公共点,试求实数a的取值集合.

    解 因为直线l与曲线C恰好有一个公共点,所以方程组只有一组实数解,消去y,得[(a+1)x-1]2ax,即(a+1)2x2-(3a+2)x+1=0. 

    (1)当a+1=0,即a=-1时,方程是关于x的一元一次方程,解得x=-1,这时,原方程组有唯一解

    (2)当a+1≠0,即a≠-1时,方程是关于x的一元二次方程.

    Δ=(3a+2)2-4(a+1)2a(5a+4)=0,解得a=0(舍去)或a=-.

    所以原方程组有唯一解

    综上,实数a的取值集合是-1,-.

    知识点二  弦长问题

    8.过双曲线x2y2=4的焦点且垂直于实轴的直线与双曲线交于AB两点,则AB的长为(  )

    A.2          B.4         C.8          D.4

    答案 B

    解析 双曲线x2y2=4的焦点为(±2,0),把x=2代入,解得y=±2,|AB|=2-(-2)=4.故选B.

    9.过点(1,0)作斜率为-2的直线,与抛物线y2=8x交于AB两点,则弦AB的长为(  )

    A.2       B.2        C.2         D.2

    答案 B

    解析 AB两点坐标分别为(x1y1),(x2y2),由直线AB的斜率为-2,且过点(1,0),得直线AB的方程为y=-2(x-1),代入抛物线方程y2=8x,得4(x-1)2=8x,整理得x2-4x+1=0,则x1x2=4,x1x2=1,则|AB|=··=2.

    10.椭圆x2+4y2=16被直线yx+1截得的弦长为________.

    答案 

    解析 消去y并化简得x2+2x-6=0.

    设直线与椭圆的交点为M(x1y1),N(x2y2),

    x1x2=-2,x1x2=-6.

    弦长|MN|=·|x1x2|

    .

    11.已知抛物线Cy2=3x的焦点为F,斜率为的直线lC的交点为AB,与x轴的交点为P.

    (1)若|AF|+|BF|=4,求l的方程;

    (2)若=3,求|AB|.

    解 设直线lyxtA(x1y1),B(x2y2).

    (1)由题设得F,0,

    故|AF|+|BF|=x1x2.

    又|AF|+|BF|=4,所以x1x2.

    可得9x2+12(t-1)x+4t2=0,

    x1x2=-.

    从而-,得t=-.

    所以l的方程为yx.

    (2)由=3可得y1=-3y2.

    可得y2-2y+2t=0,

    所以y1y2=2,从而-3y2y2=2,

    y2=-1,y1=3.

    代入C的方程得x1=3,x2

    A(3,3),B,-1.

    故|AB|=.

    知识点三  中点弦问题

    12.已知双曲线x2=1,过P(2,1)点作一直线交双曲线于AB两点,并使PAB的中点,则直线AB的斜率为__________.

    答案 6

    解析 A(x1y1),B(x2y2),把AB的坐标代入双曲线方程得

    得(x1x2)(x1x2)=.

    x1x2=4,y1y2=2,

    4(x1x2)=.

    =6.直线AB的斜率为6.

    13.已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于AB两点,若AB中点为(2,2),则直线l的方程为__________.

    答案 yx

    解析 由题意知,抛物线C的方程为y2=4x,设A(x1y1),B(x2y2),

    AB的坐标代入抛物线方程得

    (y1y2)(y1y2)=4(x1x2).

    y1y2=4,=1.

    直线l的方程为y-2=x-2,即yx.

     

     

    一、选择题

    1.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线xy+4=0有且仅有一个交点,则椭圆的长轴长为(  )

    A.3   B.2

    C.2   D.4

    答案 C

    解析 根据题意设椭圆方程为=1(b>0),则将x=-y-4代入椭圆方程,得4(b2+1)y2+8b2yb4+12b2=0,椭圆与直线xy+4=0有且仅有一个交点,Δ=(8b2)2-4×4(b2+1)(-b4+12b2)=0,即(b2+4)(b2-3)=0,b2=3,长轴长为2=2.故选C.

    2.直线y与双曲线y2=1交点的个数是(  )

    A.0            B.1           C.2          D.3

    答案 B

    解析 因为直线y与双曲线的一条渐近线yx平行,且过,0,所以直线与双曲线只有一个交点.故选B.

    3.与直线2xy+4=0平行的抛物线yx2的切线方程为(  )

    A.2xy+3=0   B.2xy-3=0

    C.2xy+1=0  D.2xy-1=0

    答案 D

    解析 设切线方程为2xym=0,与yx2联立得x2-2xm=0,Δ=4+4m=0,m=-1,即切线方程为2xy-1=0.

    4.已知椭圆E=1,过右焦点F且倾斜角为45°的直线交椭圆EAB两点,设AB的中点为M,则直线OM的斜率为(  )

    A.-3   B.-

    C.-   D.-

    答案 B

    解析 椭圆E的标准方程为=1,所以半焦距c=4,即右焦点坐标为F(4,0).过右焦点F的直线的倾斜角为45°,即斜率k=tan45°=1,所以直线方程为yx-4.联立直线方程与椭圆方程得化简可得x2-6x+6=0,设直线与椭圆的两个交点为A(x1y1),B(x2y2),则由根与系数的关系可得x1x2=6,则y1y2x1-4+x2-4=-2,由中点坐标公式可得AB的中点M(3,-1),则直线OM的斜率为=-.故选B.

    5.(多选)设AB是抛物线yx2上的两点,O是坐标原点,下列结论成立的是(  )

    A.若OAOB,则|OA||OB|≥2

    B.若OAOB,则直线AB过定点(1,0)

    C.若OAOB,则O到直线AB的距离不大于1

    D.若直线AB过抛物线的焦点F,且|AF|=,则|BF|=1

    答案 ACD

    解析 对于选项A,设A(x1x),B(x2x),

    OAOBO·O=0,x1x2+(x1x2)2=0,

    x1x2(1+x1x2)=0,x2=-

    |OA||OB|==2,当且仅当x1=±1时等号成立,故A正确;对于选项B,若OAOB,显然直线AB的斜率存在,设直线AB的方程为ykxm,联立方程消去yx2kxm=0,设A(x1y1),B(x2y2),x1x2kx1x2=-my1y2xx=(x1x2)2m2OAOBO·O=0,x1x2y1y2=0,mm2=0,m=0或1,易知直线AB不过原点,m=1,直线AB的方程为ykx+1,恒过定点(0,1),故B错误;原点O到直线AB的距离dk2≥0,k2+1≥1,d≤1,故C正确;对于选项D,直线AB过抛物线的焦点F0,,设直线AB的方程为ykx,联立方程消去yx2kx=0,设A(x1y1),B(x2y2),不妨设点Ay轴右侧,x1x2kx1x2=-|AF|=y1y1x1x2=-y2|BF|=y2=1,故D正确.故选ACD.

    二、填空题

    6.已知抛物线y2=8x,过点P(3,2)引抛物线的一弦,使它恰在点P处被平分,则这条弦所在的直线l的方程为________.

    答案 2xy-4=0

    解析 l交抛物线于A(x1y1),B(x2y2)两点,则y=8x1y=8x2,两式相减,得(y1y2)(y1y2)=8(x1x2).又P(3,2)是AB的中点,y1y2=4.又直线l的斜率存在,直线l的斜率k=2,直线l的方程为2xy-4=0.

    7.中心在原点,焦点坐标为(0,±5)的椭圆被直线3xy-2=0截得弦的中点的横坐标为,则椭圆方程为________.

    答案 =1

    解析 椭圆焦点在y轴上,可设方程为=1(ab>0),设直线3xy-2=0交椭圆于A(x1y1),B(x2y2)两点,

    x1x2=1,y1y2=3(x1x2)-4=-1,

    =0,

    =-

    =-

    =3.

    a2=75,b2=25.椭圆方程为=1.

    8.抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是________.

    答案 

    解析 设直线4x+3ym=0与抛物线y=-x2相切.

    解方程组得3x2-4xm=0.

    因为Δ=0,所以m=-,所以所求距离的最小值

    即平行直线4x+3y-8=0与4x+3y=0之间的距离d.

    三、解答题

    9.直线yax+1与双曲线3x2y2=1相交于AB两点.

    (1)求线段AB的长;

    (2)当a为何值时,以AB为直径的圆经过坐标原点?

    解 得(3-a2)x2-2ax-2=0.

    由题意可得3-a2≠0.

    A(x1y1),B(x2y2),

    x1x2x1x2.

    (1)|AB|=

    .

    (2)由题意知,OAOB,则·=0,

    x1x2y1y2=0,

    x1x2+(ax1+1)(ax2+1)=0.

    即(1+a2)x1x2a(x1x2)+1=0,

    (1+a2a·+1=0,解得a=±1.

    经检验a=±1时,以AB为直径的圆经过坐标原点.

    10.设椭圆=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.

    (1)求椭圆的方程;

    (2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PBx轴的交点,点Ny轴的负半轴上,若|ON|=|OF|(O为原点),且OPMN,求直线PB的斜率.

    解 (1)设椭圆的半焦距为c,依题意,2b=4,

    a2b2c2,可得ab=2,c=1.

    所以椭圆的方程为=1.

    (2)由题意,设P(xPyP)(xP≠0),M(xM,0).设直线PB的斜率为k(k≠0),

    B(0,2),则直线PB的方程为ykx+2,与椭圆方程联立整理得(4+5k2)x2+20kx=0,

    可得xP=-

    代入ykx+2,得yP

    进而直线OP的斜率为.

    ykx+2中,令y=0,得xM=-.

    由题意得N(0,-1),所以直线MN的斜率为-.

    OPMN,得·=-1,

    化简得k2

    从而k=±.

    所以直线PB的斜率为或-.

    相关试卷

    数学选择性必修 第一册2.8 直线与圆锥曲线的位置关系同步训练题:

    这是一份数学选择性必修 第一册2.8 直线与圆锥曲线的位置关系同步训练题,共9页。试卷主要包含了[探究点三]已知椭圆C,已知抛物线C等内容,欢迎下载使用。

    数学选择性必修 第一册第二章 平面解析几何2.5 椭圆及其方程2.5.1 椭圆的标准方程复习练习题:

    这是一份数学选择性必修 第一册第二章 平面解析几何2.5 椭圆及其方程2.5.1 椭圆的标准方程复习练习题,共7页。试卷主要包含了故选B等内容,欢迎下载使用。

    人教B版 (2019)选择性必修 第一册第二章 平面解析几何2.4 曲线与方程复习练习题:

    这是一份人教B版 (2019)选择性必修 第一册第二章 平面解析几何2.4 曲线与方程复习练习题,共7页。试卷主要包含了4 曲线与方程,下列命题中为真命题的是,已知点A,直线l等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023新教材高中数学第2章平面解析几何2.8直线与圆锥曲线的位置关系对点练新人教B版选择性必修第一册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map