初中数学人教版七年级上册2.2 整式的加减优秀课后作业题
展开第二章 整式的加减
提分小卷
(考试时间:50分钟 试卷满分:100分)
一、选择题:本题共10个小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2021·河北七年级期末)下列说法:①的系数是;②不是单项式;③是多项式;④次数是3次;⑤的次数是5次;⑥与是同类项.正确的有( )
A.2个 B.3个 C.4个 D.5个
【答案】B
【分析】根据单项式的定义,单项式的系数、次数的定义,多项式的次数的定义,同类项的定义逐个判断即可.
【详解】解:的系数是,故①错误;是单项式,故②错误;
是多项式,故③正确;次数是3次,故④正确;
的次数是2次,故⑤错误;与是同类项,故⑥错误;
即正确的个数是3个.故选:B
【点睛】本题考查了单项式的定义,单项式的系数、次数的定义,多项式的次数的定义,同类项的定义等知识点,能熟记知识点是解此题的关键.
2.(2020·南京市初一期末)下列合并同类项正确的是( )
① ;② ;③ ;④;⑤; ⑥ ;⑦
A.①②③④ B.④⑤⑥ C.⑥⑦ D.⑤⑥⑦
【答案】D
【分析】先观察是不是同类项,如果是按照合并同类项的法则合并.
【解析】解:①不是同类项,不能合并,故错误;②不是同类项,不能合并,故错误;
③,故错误;④不是同类项,不能合并,故错误;
⑤,故正确; ⑥,故正确;⑦,故正确.
⑤⑥⑦正确,故选:D.
【点睛】本题考查了合并同类项,合并同类项需注意:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同字母的代数项,同一字母指数相同;②“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.
3.(2021·河南七年级期末)下列计算正确的是( )
A. B.
C. D.
【答案】D
【分析】按照去括号的基本法则,仔细去括号求解即可.
【详解】∵,∴选项A错误;
∵,∴选项B错误;
∵,∴选项C错误;
∵,∴选项D正确.故选D.
【点睛】本题考查了去括号法则,添括号法则,熟练掌握两种法则,并灵活运用是解题的关键.
4.(2021·湖南张家界市·七年级期末)下列各式中,符合代数式书写要求的是( ).
A. B. C. D.
【答案】D
【分析】根据代数式的性质,对各个选项逐个分析,即可得到答案.
【详解】应表示为:,故选项A不符合要求;
应表示为:,故选项B不符合要求;
应表示为:,故选项C不符合要求;故选:D.
【点睛】本题考查了代数式的知识;解题的关键是熟练掌握代数式的性质,从而完成求解.
5.(2021·苏州市南环实验中学校八年级期中)已知,则,的值为( )
A.3 B.5 C.7 D.9
【答案】B
【分析】方程a2-5a+1=0,两边除以a,即可解决问题;
【详解】解:∵a2-5a+1=0,两边除以a得到,a-5+=0,∴a+=5,故选:B.
【点睛】本题考查了代数式求值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
6.(2021·云南九年级模拟)有一组数:,它们是按一定规律排列的,这一组数的第n个数是( )
A. B. C. D.
【答案】C
【分析】根据题目中的数字,可以发现数字的分子和分母的变化特点,从而可以写出第n个数.
【详解】解:一组数为∴这组数据第1个数为:,
第2个数为:,第3个数为:…
∴第n个数为:故选:C
【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数字.
7.(2021·重庆南开中学七年级期末)按如图所示的运算程序,能使输出的结果为32的是( )
A., B., C., D.,
【答案】A
【分析】先比较x,y的大小,后选择计算途径中的代数式,代入求值即可.
【详解】∵x=2,y=4,∴x<y,∴==32,故A符合题意;
∵x=2,y= -4,∴x>y,∴=64,故B不符合题意;
∵x=4,y=2,∴x>y,∴=64,故C不符合题意;
∵x= -4,y=2,∴x<y,∴==-16,故D不符合题意;故选A.
【点睛】本题考查了代数式的程序型计算,准确理解程序的意义是解题的关键.
8.(2021·辽宁锦州市·七年级期中)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( )
A. B. C. D.
【答案】D
【分析】根据题意易得,然后进行求解即可.
【详解】解:由题意得:
==;故选D.
【点睛】本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.
9.(2021·广西南宁市·七年级期末)(阅读理解)计算:,,,,观察算式,我们发现两位数乘11的速算方法:头尾一拉,中间相加,满十进一.
(拓展应用)已知一个两位数,十位上的数字是,个位上的数字是,这个两位数乘11,计算结果中十位上的数字可表示为( )
A.或 B.或 C. D.或
【答案】D
【分析】根据题目中的速算法可以解答本题.
【详解】由题意可得,某一个两位数十位数字是a,个位数字是b,将这个两位数乘11,得到一个三位数,
则根据上述的方法可得:当a+b< 10时,该三位数百位数字是a,十位数字是a + b,个位数字是b,
当a+b≥10时,结果的百位数字是a + 1,十位数字是a+b- 10,个位数字是b.
所以计算结果中十位上的数字可表示为:a+b 或a+b−10.故选D.
【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
10.(2021·重庆八年级期末)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,⋯,按此规律排列,则第⑧个图形中小圆圈的个数为( )
A.24 B.27 C.30 D.33
【答案】B
【分析】根据前三个图形归纳类推出一般规律,由此即可得出答案.
【详解】解:第①个图形中小圆圈的个数为,
第②个图形中小圆圈的个数为,
第③个图形中小圆圈的个数为,
归纳类推得:第n个图形中小圆圈的个数为(其中,为正整数),
则第⑧个图形中小圆圈的个数为,故选:B.
【点睛】本题考查了图形类规律探索,正确归纳类推出一般规律是解题关键.
二、填空题:本题共5个小题,每题4分,共20分。
11.(2021·重庆市綦江区石角中学七年级期中)在式子﹣2x2,3xy,,﹣,0,mx﹣ny中,单项式有_______个,整式有_______个.
【答案】4 5
【分析】根据分母中不含字母的式子是整式,数与字母的乘积是单项式,单独一个数或一个字母也是单项式进行判断.
【详解】解:﹣2x2,3xy,﹣,0是单项式,共4个;
﹣2x2,3xy,﹣,0,mx﹣ny是整式,共5个故答案为:4;5
【点睛】本题考查了整式,注意单项式是数与字母的乘积,多项式是单项式的和.
12.(2021·山西临汾市·七年级期末)一个单项式满足下列两个条件:①系数是;②次数是.请写出一个同时满足上述两个条件的单项式________.
【答案】(答案不唯一)
【分析】根据单项式的定义分析,即可得到答案.
【详解】根据题意,可同时满足条件的单项式为:(答案不唯一)
故答案为:(答案不唯一).
【点睛】本题考查了单项式的知识;解题的关键是熟练掌握单项式的性质,从而完成求解.
13.(2021·浙江七年级月考)某同学做一道题,已知两个多项式,求的值.他误将看成,经过正确计算求得结果为,已知,则正确答案是__________.
【答案】4
【分析】先根据2A-B=3x2-3x+5,B=x2-x-1求出A的表达式,再求出A-2B的值即可.
【详解】解:∵2A-B=3x2-3x+5,B=x2-x-1,
∴2A=(3x2-3x+5)+(x2-x-1)=4x2-4x+4,∴A=2x2-2x+2,
∴A-2B=(2x2-2x+2)-2(x2-x-1)=2x2-2x+2-2x2+2x+2=4.故答案为:4.
【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.
14.(2020·浙江七年级期末)已知,,无论取何值时,恒成立,则的值为______.
【答案】2
【分析】根据题意可以得到关于a的等式,从而可以求得a的值,本题得以解决.
【详解】解:∵P=3ax-8x+1,Q=x-2ax-3,无论x取何值时,3P-2Q=9恒成立,
∴3P-2Q=3(3ax-8x+1)-2(x-2ax-3)=9ax-24x+3-2x+4ax+6=13ax-26x+9=(13a-26)x+9=9,
∴13a-26=0,解得,a=2,故答案为:2.
【点睛】本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.
15.(2021·重庆七年级期末)如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的周长为
【答案】
【分析】先求矩形的长和宽,然后依据周长公式求解即可;
【详解】矩形的宽为= ,矩形的长为= ,
∴ 矩形的周长为= ,
【点睛】本意考查了求图形的周长,熟练掌握相关知识是解题的关键.
三、解答题:本题共5个小题,每题10分,共50分。
16.(2021.绵阳市 七年级期中)请将下列代数式先化简,再求值
(1),其中.
(2),其中.
【答案】(1),1;(2),
【分析】(1)根据去括号、合并同类项,可化简整式,再将a和b值代入计算;
(2)根据去括号、合并同类项,可化简整式,再将x和y值代入计算;
【详解】解:(1)
=
=
将代入,
原式==1;
(2)
=
=
将代入,
原式==.
【点睛】本题考查了整式的加减及化简求值的知识,先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值.
17.(2021·杭州市采荷中学)(1)若单项式与的和仍是单项式,求m,n的值;
(2)若多项式可化为六次二项式,求的值.
【答案】(1),;(2)55或52
【分析】(1)根据题意,这两个单项式为同类项,则它们的字母相同,相同字母的指数也相同,即可求出m和n的值;(2)分情况讨论,和是同类项或和是同类项,根据多项式是六次二项式,求出m和n的值,再代入求值.
【详解】解:(1)两个单项式的和还是单项式,则这两个单项式为同类项,
∴,,解得,;
(2)若和是同类项,则原式,此时,即,
∵它是六次二项式,∴,则,
;
若和是同类项,则原式,此时,
∵它是六次二项式,∴,则,
.
【点睛】本题考查同类项,多项式的项数和次数的定义,解题的关键是利用分类讨论的思想进行求解.
18.(2021·福建厦门市·厦门一中)阅读材料:我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:
(1)把看成一个整体,合并的结果是______;
(2)已知,求的值;
(3)已知,,,求的值.
【答案】(1);(2);(3)
【分析】(1)根据题中所给方法可直接进行合并同类项;
(2)由可得,然后利用整体代入进行求解即可;
(3)由与相加可得,由与两式相加可得,然后代入求解即可.
【详解】解:(1)由题意得:;故答案为;
(2)由可得,则有:;
(3)由与相加可得,由与两式相加可得,
∴.
【点睛】本题主要考查代数式的值及合并同类项,关键是根据题意利用整体思想进行求解问题.
19.(2021·四川七年级期中)现有一块长方形菜地,长24米,宽20米.菜地中间欲铺设横、纵两条道路(图中空白部分),如图1所示,纵向道路的宽是横向道路的宽的2倍,设横向道路的宽是x米(x>0).
(1)填空:在图1中,纵向道路的宽是 米;(用含x的代数式表示)
(2)试求图1中菜地(阴影部分)的面积;
(3)若把横向道路的宽改为原来的2.2倍,纵向道路的宽改为原来的一半,如图2所示,设图1与图2中菜地的面积(阴影部分)分别为,试比较的大小.
【答案】(1)2x;(2)(2x2﹣68x+480)平方米;(3)
【分析】(1)根据纵向道路的宽是横向道路的宽的2倍即可求解;
(2)根据题意,由菜地的面积=长方形的面积﹣菜地道路的面积求解即可;
(3)根据菜地的面积=长方形的面积﹣菜地道路的面积分别求出S1、S2,再比较即可.
【详解】解:(1)∵横向道路的宽是x米,且纵向道路的宽是横向道路的宽的2倍,
∴纵向道路的宽是2x米,故答案为:2x;
(2)由题意,图1中菜地的面积为24×20﹣(24×2x+20×x﹣x·2x)=2x2﹣68x+480(平方米),
答:图1中菜地(阴影部分)的面积为(2x2﹣68x+480)平方米;
(3)由题意,图1中菜地的面积S1= 2x2﹣68x+480(平方米)
图2中横向道路的宽为2.2x米,纵向道路的宽为x米,
∴图2中菜地的面积S2=24×20﹣(24×x+20×2.2x﹣x·2.2x=2.2x2﹣68x+480(平方米),
∵x>0,∴x2>0,∴S1﹣S2=(2x2﹣68x+480)﹣(2.2x2﹣68x+480)=﹣0.2x2<0,∴S1<S2.
【点睛】本题考查了列代数式、整式的加减的应用、长方形的面积,正确表示出菜地道路的面积是解答的关键.
20.(2021·重庆市七年级期末)一次性购物金额促销方案低于300元所购商品全部按九折结算,不低于300元但低于600元所购商品全部按八折结算,600元或超过600元其中前600元按八折结算,超过600元的部分按七折结算.
“双十一”已经成为中国电子商务行业的年度盛事,每年这一天成为全民的购物节.在今年的“双十一”期间,某网店举办促销活动,方案如下表所示:
一次性购物金额 | 促销方案 |
低于300元 | 所购商品全部按九折结算 |
不低于300元但低于600元 | 所购商品全部按八折结算 |
600元或超过600元 | 其中前600元按八折结算,超过600元的部分按七折结算 |
(1)如果顾客在该网店一次性购物x元(),求实际付款多少元?(用含x的代数式表示)
(2)某顾客在该店两次购物的商品共计800元.若第一次购物商品的金额为a元(),求该顾客两次购物的实际付款共多少元?(用含a的代数式表示)
(3)当时,,求该顾客两次购物的实际付款共多少元?
【答案】(1)(0.7x+60)元;(2);(3)640元
【分析】(1)根据600元或超过600元,其中前600元按八折结算,超过600元的部分按七折结算可列出代数式;(2)分三种情况进行讨论,求出该顾客两次购物的实际付款共多少元即可;
(3)将a=700代入(2)中结果计算即可.
【详解】解:(1)600×0.8+0.7(x-600)=(0.7x+60)元.答:实际付款(0.7x+60)元.
(2)①当300<a≤500时,则300≤800-a<500,则两次均按八折结算,
∴购物实际付款:0.8×800=640(元);
②当500<a<600时,则200<800-a<300,
则第一次按八折结算,第二次按九折结算,
∴购物实际付款:0.8a+0.9(800-a)=(-0.1a+720)元;
③当600≤a<800时,则0<800-a≤200,
则第一次中前600元按八折结算,超过600元的部分按七折结算,第二次按九折结算,
∴购物实际付款:600×0.8+0.7(a-600)+0.9(800-a)=(-0.2a+780)元.
故本次实际付款=;
(3)当时,该顾客两次购物的实际付款为:-0.2×700+780=640元.
【点睛】本题考查了列代数式,代数式求值,关键明白优惠的方案,从而可求出解.
数学七年级上册3.1.1 一元一次方程优秀同步训练题: 这是一份数学七年级上册3.1.1 一元一次方程优秀同步训练题,文件包含第三章一元一次方程提分小卷-七年级数学上册尖子生选拔卷人教版原卷版docx、第三章一元一次方程提分小卷-七年级数学上册尖子生选拔卷人教版解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
初中2.2 整式的加减优秀课堂检测: 这是一份初中2.2 整式的加减优秀课堂检测,文件包含第二章整式的加减选拔卷-七年级数学上册尖子生选拔卷人教版原卷版doc、第二章整式的加减选拔卷-七年级数学上册尖子生选拔卷人教版解析版doc、第二章整式的加减选拔卷-七年级数学上册尖子生选拔卷人教版答题纸docx、第二章整式的加减选拔卷-七年级数学上册尖子生选拔卷人教版考试版doc等4份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
人教版第一章 有理数1.2 有理数1.2.1 有理数精品同步训练题: 这是一份人教版第一章 有理数1.2 有理数1.2.1 有理数精品同步训练题,文件包含第一章有理数提分小卷-七年级数学上册尖子生选拔卷人教版原卷版docx、第一章有理数提分小卷-七年级数学上册尖子生选拔卷人教版解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。