|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022-2023学年天津市武清区天和城实验中学高一下学期5月月考数学试题含答案
    立即下载
    加入资料篮
    2022-2023学年天津市武清区天和城实验中学高一下学期5月月考数学试题含答案01
    2022-2023学年天津市武清区天和城实验中学高一下学期5月月考数学试题含答案02
    2022-2023学年天津市武清区天和城实验中学高一下学期5月月考数学试题含答案03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年天津市武清区天和城实验中学高一下学期5月月考数学试题含答案

    展开
    这是一份2022-2023学年天津市武清区天和城实验中学高一下学期5月月考数学试题含答案,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年天津市武清区天和城实验中学高一下学期5月月考数学试题

     

    一、单选题

    1.复数在复平面上对应的点位于(    

    A.第一象限 B.第二象限 C.第三象限 D.第四象限

    【答案】B

    【解析】先利用复数的乘法化简复数z,再利用复数的几何意义求解.

    【详解】因为复数

    所以在复数z复平面上对应的点位于第二象限

    故选:B

    2.已知一组数据为百分位数是(    

    A B C D

    【答案】C

    【解析】直接利用百分位数的定义求解.

    【详解】因为有6位数,

    所以

    所以第百分位数是第三个数6.

    故选:C

    3.已知圆锥的侧面展开图是一个半径为3、圆心角为的扇形,则该圆锥的高是(    

    A1 B C D

    【答案】C

    【分析】设此圆的底面半径为,高为,母线为,根据底面圆周长等于展开扇形的弧长,建立关系式解出,再根据勾股定理,即可求出此圆锥高.

    【详解】设此圆的底面半径为,高为,母线为

    圆锥的侧面展开图是一个半径为,圆心角为的扇形,

    ,解得

    因此,此圆锥的高

    故选:C

    4.设样本数据13a2的平均数为5,则样本的方差为(   

    A5 B C D

    【答案】B

    【分析】由平均数以及方差的计算公式求解.

    【详解】,则样本的方差为.

    故选:B

    5.一个水平放置的平面图形的直观图是一个底角为,腰和上底长均为1的等腰梯形,则该平面图形的面积等于(    ).

    A B C D

    【答案】B

    【分析】根据斜二测直观图的特点可知原图形为一直角梯形,由梯形面积公式求解.

    【详解】解:如图,恢复后的原图形为一直角梯形,

    所以.

    故选:B.

    6.已知事件AB,且,则下列说法正确的是(   

    A.若BA那么

    B.若AB互斥,那么

    C.若AB相互独立,那么

    D.若AB相互独立,那么

    【答案】B

    【分析】根据事件的包含关系、相互独立、互斥事件概率计算方法计算即可.

    【详解】对于A,如果,那么,故 A错误;

    对于B,如果A互斥,那么,故 B正确;

    对于C,如果A相互独立,那么,故C错误;

    对于D,如果A相互独立,那么,故 D错误;

    故选:B

    7.某校高三年级共有800名学生参加了数学测验,将所有学生的数学成绩分组如下:[90100)[100110)[110120)[120130)[130140)[140150],得到的频率分布直方图如图所示,则下列说法中正确的是(    

    成绩不低于120分的学生人数为440800名学生中数学成绩的众数为125800名学生数学成绩的中位数的近似值为121.4800名学生数学成绩的平均数为120.

    A1 B2 C3 D4

    【答案】D

    【分析】先由频率分布直方图求出的值,从而可求出成绩不低于120分的学生人数,平均数和中位数,然后进行判断即可

    【详解】解:由题意得,解得

    所以成绩不低于120分的学生人数为,所以正确;

    由频率直方图可知分在[120130)中最多,所以众数为,所以正确;

    800名学生数学成绩的中位数为,所以正确;

    800名学生数学成绩的平均数为

    ,所以正确,

    故选:D

    【点睛】此题考查频率分布直方图的应用,考查由频率分布直方图求平均数、众数、中位数,考查运算能力,属于基础题

    8.如图所示,在三棱柱中,底面,直线与侧面所成的角为,则该三棱柱的侧面积为

    A B C12 D

    【答案】A

    【分析】由线面垂直的判定定理可得BC,得到直线与侧面所成的角为,然后由题目条件可得AB,BC的长度,从而可得侧面积.

    【详解】底面,则,可得BC,所以直线与侧面所成的角为,又,则该三棱柱的侧面积为2

    故选A

    【点睛】本题考查线面垂直判定定理的应用和线面角的求法,属于基础题.

    9.如图,在矩形中,上一点,,若,则的值为(    

    A B C D1

    【答案】D

    【分析】借助于矩形建立直角坐标系,利用坐标法求解.

    【详解】

    建立如图示坐标系,由则有:

    因为E上一点,可设

    所以.

    因为,所以,即,解得:,所以.

    得:

    ,解得:,所以.

    故选:D

     

    二、填空题

    10是虚数单位,则的值为          .

    【答案】

    【分析】先化简复数,再利用复数模的定义求所给复数的模.

    【详解】

    【点睛】本题考查了复数模的运算,是基础题.

    11.若正方体的表面积为,则它的外接球的表面积为        .

    【答案】

    【分析】由正方体的外接球的直径与正方体的棱长之间的关系求解.

    【详解】由已知得正方体的棱长为

    又因为正方体的外接球的直径等于正方体的体对角线的长,

    所以正方体的外接球的半径

    所以外接球的表面积

    故得解.

    【点睛】本题考查正方体的外接球,属于基础题.

    12.一个古典概型的样本空间及事件AB,其中 ,则=          .

    【答案】

    【分析】根据古典概型的概率公式能求出结果.

    【详解】;

    故答案为:.

    13.已知甲、乙两球落入盒子的概率分别为.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为         ;甲、乙两球至少有一个落入盒子的概率为        

    【答案】         

    【分析】根据相互独立事件同时发生的概率关系,即可求出两球都落入盒子的概率;同理可求两球都不落入盒子的概率,进而求出至少一球落入盒子的概率.

    【详解】甲、乙两球落入盒子的概率分别为

    且两球是否落入盒子互不影响,

    所以甲、乙都落入盒子的概率为

    甲、乙两球都不落入盒子的概率为

    所以甲、乙两球至少有一个落入盒子的概率为.

    故答案为:.

    【点睛】本题主要考查独立事件同时发生的概率,以及利用对立事件求概率,属于基础题.

    14.已知圆柱的高为6,它的两个底面的圆周在半径为5的同一个球的球面上.则球的体积与圆柱的体积的比值为          .

    【答案】

    【分析】画图分析可得, 先求得圆柱的底面半径, 进而求得球的体积与圆柱的体积的比值.

    【详解】      

    如图所示,外接球的体积 ,

    根据对称性可知,圆柱的底面半径 ,所以圆柱体积 .

    故球的体积与圆柱的体积的比值为 .

    故答案为:.

    15.如图,在侧棱垂直于底面的三棱柱中,F分别是的中点,则异面直线所成角的余弦值是  

    【答案】

    【分析】连结BF,则异面直线所成角为AFB,在直角三角形ABF中,解三角形即可.

    【详解】

    连结BF,在三棱柱中,因为F分别是的中点,

    所以,AFB(或其补角)即为异面直线所成角.

    在三棱柱,因为侧棱垂直于底面,即,所以.

    ,且,所以平面,而平面平面

    所以

    不妨设AB=2,

    在直角三角形ABF中,AB=2,

    所以异面直线所成角的余弦值为:.

    故答案为:

    【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:

    (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;

    (2)认定:证明作出的角就是所求异面直线所成的角;

    (3)计算:求该角的值,常利用解三角形;

    (4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.

     

    三、解答题

    16.已知向量

    (1)向量在向量上的投影向量的坐标;

    (2)

    (3)垂直,求实数的值.

    【答案】(1)

    (2)8

    (3)19

     

    【分析】1)由投影向量的计算公式求解即可;

    2)由模长公式计算即可;

    3)由向量垂直的性质求出实数的值.

    【详解】1.

    2)因为,所以.

    3    

         

    因为垂直,所以

    解得,即当时,垂直.

    17.已知复数,当取何实数值时,复数z是:

    (1)纯虚数;

    (2)

    (3)z对应的点位于复平面的第四象限

    【答案】(1)0

    (2)2

    (3)0.

     

    【分析】1)利用纯虚数的定义列式计算作答.

    2)利用复数相等,列式求解作答.

    3)利用复数对应点的位置,列出不等式求解作答.

    【详解】1)若复数是纯虚数,则,解得

    所以当时,复数z是纯虚数.

    2)依题意,,解得

    所以当时,.

    3)依题意, ,解得0

    所以当时,z对应的点位于复平面的第四象限.

    18.在中,内角ABC所对的边分别是abc,已知

    (1)b的值;

    (2)的值.

    【答案】(1)

    (2)

     

    【分析】1)利用正弦定理可得,从而可得,进而根据余弦定理即可求解;

    2)先计算,再结合倍角公式和差角余弦公式即可求解.

    【详解】1)在中,由可得,又由

    可得

    .

    ,故

    根据余弦定理可得,可得.

    2

    所以.

    19.已知某校甲、乙、丙三个年级的学生志愿者人数分别为1208040.现采用分层抽样的方法从中抽取6名同学去某敬老院参加献爱心活动.

    1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?

    2)设抽出的6名同学分别用表示,现从中随机抽取2名同学承担敬老院的卫生工作;

    i)试用所给字母列举出所有可能的抽取结果;

    ii)设为事件抽取的2名同学不在同一年级,求事件发生的概率.

    【答案】1)从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,1人;(2)(i)答案见解析;(ii.

    【分析】1)根据分层抽样定义,直接按比例抽取即可得解;

    2)(i)分别列出从抽出的6名同学中随机抽取2名同学的所有可能结果即可;

    ii)由(i)可得抽出的6名同学中随机抽取的2名同学来自同一年级的结果,由概率公式即可得解.

    【详解】1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶1

    由于采用分层抽样的方法从中抽取6名同学,

    因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,1.

    2)(i)从抽出的6名同学中随机抽取2名同学的所有可能结果为

    ,共15.

    ii)由(i),不妨设抽出的6名同学中,来自甲年级的是,来自乙年级的是,来自丙年级的是,则从抽出的6名同学中随机抽取的2名同学来自同一年级的所有可能结果为,共4.

    所以,事件发生的概率为.

    20.如图,在底面是矩形的四棱锥中,平面PD的中点.

    (1)求证:平面平面PAD

    (2)求平面EAC与平面ACD夹角的余弦值;

    (3)B点到平面EAC的距离.

    【答案】(1)证明见解析

    (2)

    (3)

     

    【分析】1)根据已知条件建立空间直角坐标系,求出相关点的坐标,利用两向量的数量积的坐标表示及线面垂直的判定定理,结合面面垂直的判定定理即可求解;

    2)求出平面EAC与平面ACD的法向量,利用向量的夹角公式及面面角的定义即可求解;

    3)根据(2)得出平面EAC的法向量,利用点到平面的距离公式即可求解.

    【详解】1)由题可知,以为原点,建立空间直角坐标系,如图所示

    所以

    所以,

    所以,

    ,平面PAD,所以平面PAD,

    平面,所以平面平面PAD.

    2)设平面的法向量为,则

    ,即

    ,则,所以

    由题意知,平面,平面ACD的法向量为,

    设平面EAC与平面ACD夹角的,则

    所以平面EAC与平面ACD夹角的余弦值为.

    3)由(2)知,平面的法向量为

    B点到平面EAC的距离为,则

    所以B点到平面EAC的距离为.

     

    相关试卷

    天津市武清区天和城实验中学2022-2023学年高一数学下学期5月月考试题(Word版附答案): 这是一份天津市武清区天和城实验中学2022-2023学年高一数学下学期5月月考试题(Word版附答案),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023天津武清区天和城实验中学高一下学期5月月考数学试题含答案: 这是一份2023天津武清区天和城实验中学高一下学期5月月考数学试题含答案,文件包含天津市武清区天和城实验中学2022-2023学年度高一第二学期第二次形成性检测数学答案docx、天津市武清区天和城实验中学2022-2023学年度高一第二学期第二次形成性检测数学试卷docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    天津市武清区天和城实验中学2020-2021学年高一上学期第一次形成性检测数学试卷 Word版含答案: 这是一份天津市武清区天和城实验中学2020-2021学年高一上学期第一次形成性检测数学试卷 Word版含答案,共7页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022-2023学年天津市武清区天和城实验中学高一下学期5月月考数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map