|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题18二次函数的应用:三年(2021-2023)中考数学真题分项汇编
    立即下载
    加入资料篮
    专题18二次函数的应用:三年(2021-2023)中考数学真题分项汇编01
    专题18二次函数的应用:三年(2021-2023)中考数学真题分项汇编02
    专题18二次函数的应用:三年(2021-2023)中考数学真题分项汇编03
    还剩89页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题18二次函数的应用:三年(2021-2023)中考数学真题分项汇编

    展开
    这是一份专题18二次函数的应用:三年(2021-2023)中考数学真题分项汇编,共92页。

    专题18二次函数的应用三年(2021-2023)中考数学真题分项汇编
    专题18二次函数的应用
    一.选择题(共6小题)
    (2023•天津)
    1.如图,要围一个矩形菜园,共中一边是墙,且的长不能超过,其余的三边用篱笆,且这三边的和为.有下列结论:
    ①的长可以为;
    ②的长有两个不同的值满足菜园面积为;
    ③菜园面积的最大值为.
    其中,正确结论的个数是(    )
      
    A.0 B.1 C.2 D.3
    (2023•丽水)
    2.一个球从地面竖直向上弹起时的速度为10米/秒,经过(秒)时球距离地面的高度(米)适用公式,那么球弹起后又回到地面所花的时间(秒)是(    )
    A.5 B.10 C.1 D.2
    (2022•自贡)
    3.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是(    )

    A.方案1 B.方案2 C.方案3 D.方案1或方案2
    (2021秋•鄄城县期末)
    4.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )

    A.﹣20m B.10m C.20m D.﹣10m
    (2021•陕西)
    5.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为(  ).

    A.9m B.10m C.11m D.12m
    (2021•北京)
    6.如图,用绳子围成周长为的矩形,记矩形的一边长为,它的邻边长为,矩形的面积为.当在一定范围内变化时,和都随的变化而变化,则与与满足的函数关系分别是(    )

    A.一次函数关系,二次函数关系 B.反比例函数关系,二次函数关系
    C.一次函数关系,反比例函数关系 D.反比例函数关系,一次函数关系
    二.填空题(共18小题)
    (2023•滨州)
    7.要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心,水管长度应为 .

    (2023•长春)
    8.年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面 米.
      
    (2023•宜昌)
    9.如图,一名学生推铅球,铅球行进高度(单位:)与水平距离(单位:)之间的关系是,则铅球推出的距离 .

    (2022•连云港)
    10.如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是 .

    (2022•聊城)
    11.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额-总成本).
      
    (2022•南充)
    12.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高时,水柱落点距O点;喷头高时,水柱落点距O点.那么喷头高 m时,水柱落点距O点.

    (2022•南通)
    13.根据物理学规律,如果不考虑空气阻力,以的速度将小球沿与地面成角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是,当飞行时间t为 s时,小球达到最高点.
    (2022•甘肃)
    14.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度(单位:m)与飞行时间(单位:s)之间具有函数关系:,则当小球飞行高度达到最高时,飞行时间 s.

    (2022•襄阳)
    15.在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm,与跳台底部所在水平面的竖直高度为ym,y与x的函数关系式为y=x2+x+2(0≤x≤20.5),当她与跳台边缘的水平距离为 m时,竖直高度达到最大值.
      
    (2022•广安)
    16.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.

    (2022•新疆)
    17.如图,用一段长为的篱芭围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为 .

    (2022•成都)
    18.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是 ;当时,的取值范围是 .

    (2022•黔西南州)
    19.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是,则铅球推出的水平距离OA的长是 m.

    (2021•台州)
    20.以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2= .

    (2021•沈阳)
    21.某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为 元时,才能使每天所获销售利润最大.
    (2021•黔西南州)
    22.小华酷爱足球运动.一次训练时,他将足球从地面向上踢出,足球距地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系为h=﹣5t2+12t,则足球距地面的最大高度是 m.
    (2021•连云港)
    23.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是 元.
    (2021•襄阳)
    24.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度(单位:)与它距离喷头的水平距离(单位:)之间满足函数关系式,喷出水珠的最大高度是 .

    三.解答题(共36小题)
    (2023•无锡)
    25.某景区旅游商店以元的价格采购一款旅游食品加工后出售,销售价格不低于元,不高于元,经市场调查发现每天的销售量与销售价格(元)之间的函数关系如图所示.
      
    (1)求关于的函数表达式:
    (2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润=(销售价格一采购价格)×销售量】
    (2023•辽宁)
    26.商店出售某品牌护眼灯,每台进价为40元,在销售过程中发现,月销量(台)与销售单价(元)之间满足一次函数关系,规定销售单价不低于进价,且不高于进价的2倍,其部分对应数据如下表所示:
    销售单价(元)

    50
    60
    70

    月销量(台)

    90
    80
    70

    (1)求y与x之间的函数关系式;
    (2)当护眼灯销售单价定为多少元时,商店每月出售这种护眼灯所获的利润最大?最大月利润为多少元?
    (2023•赤峰)
    27.乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度为的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.

    乒乓球到球台的竖直高度记为(单位:),乒乓球运行的水平距离记为(单位:).测得如下数据:
    水平距离x/







    竖直高度y/







    (1)在平面直角坐标系中,描出表格中各组数值所对应的点,并画出表示乒乓球运行轨迹形状的大致图象;
      
    (2)①当乒乓球到达最高点时,与球台之间的距离是__________,当乒乓球落在对面球台上时,到起始点的水平距离是__________;
    ②求满足条件的抛物线解析式;
    (3)技术分析:如果只上下调整击球高度,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出的取值范围,以利于有针对性的训练.如图②.乒乓球台长为274,球网高为15.25.现在已经计算出乒乓球恰好过网的击球离度的值约为1.27.请你计算出乒乓球恰好落在对面球台边缘点B处时,击球高度的值(乒乓球大小忽略不计).
    (2023•内蒙古)
    28.随着科技的发展,扫地机器人已广泛应用于生活中,某公司推出一款新型扫地机器人,经统计该产品2022年每个月的销售情况发现,每台的销售价格随销售月份的变化而变化、设该产品2022年第(为整数)个月每台的销售价格为(单位:元),与的函数关系如图所示(图中为一折线).
      
    (1)当时,求每台的销售价格与之间的函数关系式;
    (2)设该产品2022年第个月的销售数量为(单位:万台),m与的关系可以用来描述,求哪个月的销售收入最多,最多为多少万元?(销售收入每台的销售价格销售数量)
    (2023•湖北)
    29.某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:

    时间:第x(天)


    日销售价(元/件)

    50
    日销售量(件)

    (,x为整数)
    设该商品的日销售利润为w元.
    (1)直接写出w与x的函数关系式__________________;
    (2)该商品在第几天的日销售利润最大?最大日销售利润是多少?
    (2023•菏泽)
    30.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.

    (1)设计一个使花园面积最大的方案,并求出其最大面积;
    (2)在花园面积最大的条件下,A,B两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?
    (2023•兰州)
    31.一名运动员在高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面的高度与离起跳点A的水平距离之间的函数关系如图所示,运动员离起跳点A的水平距离为时达到最高点,当运动员离起跳点A的水平距离为时离水面的距离为.
      
    (1)求y关于x的函数表达式;
    (2)求运动员从起跳点到入水点的水平距离的长.
    (2023•河南)
    32.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.
    如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.
      
    (1)求点P的坐标和a的值.
    (2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.
    (2023•温州)
    33.一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.
        
    (1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).
    (2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?
    (2023•陕西)
    34.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:
    方案一,抛物线型拱门的跨度,拱高.其中,点N在x轴上,,.
    方案二,抛物线型拱门的跨度,拱高.其中,点在x轴上,,.
    要在拱门中设置高为的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架的面积记为,点A、D在抛物线上,边在上;方案二中,矩形框架的面积记为,点,在抛物线上,边在上.现知,小华已正确求出方案二中,当时,,请你根据以上提供的相关信息,解答下列问题:

    (1)求方案一中抛物线的函数表达式;
    (2)在方案一中,当时,求矩形框架的面积并比较,的大小.
    (2023•随州)
    35.为了振兴乡村经济,增加村民收入,某村委会干部带领村民在网上直播推销农产品,在试销售的30天中,第x天(且x为整数)的售价p(元/千克)与x的函数关系式(且x为整数),销量q(千克)与x的函数关系式为,已知第5天售价为50元/千克,第10天售价为40元/千克,设第x天的销售额为W元
    (1)___________, ___________;
    (2)求第x天的销售额W元与x之间的函数关系式;
    (3)在试销售的30天中,销售额超过1000元的共有多少天?
    (2023•河北)
    36.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.
    如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.
      
    (1)写出的最高点坐标,并求a,c的值;
    (2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.
    (2023•十堰)
    37.“端午节”吃粽子是中国传统习俗,在“端午节”来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒,根据以往销售经验发现,当每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,设每盒售价为x元,日销售量为p盒.
    (1)当时,__________;
    (2)当每盒售价定为多少元时,日销售利润W(元)最大?最大利润是多少?
    (3)小强说:“当日销售利润最大时,日销售额不是最大,”小红说:“当日销售利润不低于8000元时,每盒售价x的范围为.”你认为他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确的结论.
    (2023•湖北)
    38.加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系如图所示,其中;乙种蔬菜的种植成本为50元/.
      
    (1)当___________时,元/;
    (2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?
    (3)学校计划今后每年在这土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降,乙种蔬菜种植成本平均每年下降,当a为何值时,2025年的总种植成本为元?
    (2023•临沂)
    39.综合与实践
    问题情境
    小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A,B,C,D,E五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:

    售价(元/盆)
    日销售量(盆)
    A
    20
    50
    B
    30
    30
    C
    18
    54
    D
    22
    46
    E
    26
    38
    数据整理
    (1)请将以上调查数据按照一定顺序重新整理,填写在下表中:
    售价(元/盆)





    日销售量(盆)





    模型建立
    (2)分析数据的变化规律,找出日销售量与售价间的关系;
    拓广应用
    (3)根据以上信息,小莹妈妈在销售该种花卉中,
    ①要想每天获得400元的利润,应如何定价?
    ②售价定为多少时,每天能够获得最大利润?
    (2023•云南)
    40.数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.
    同学们,请你结合所学的数学解决下列问题.
    在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数(实数为常数)的图象为图象.
    (1)求证:无论取什么实数,图象与轴总有公共点;
    (2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由.
    (2023•南充)
    41.某工厂计划从A,B两种产品中选择一种生产并销售,每日产销x件.已知A产品成本价m元/件(m为常数,且,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y元,y(元)与每日产销x(件)满足关系式
    (1)若产销A,B两种产品的日利润分别为元,元,请分别写出,与x的函数关系式,并写出x的取值范围;
    (2)分别求出产销A,B两种产品的最大日利润.(A产品的最大日利润用含m的代数式表示)
    (3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润(售价成本)产销数量专利费】
    (2022•衢州)
    42.如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线为轴,铅垂线为轴,建立平面直角坐标系.运动员以速度从点滑出,运动轨迹近似抛物线.某运动员7次试跳的轨迹如图2.在着陆坡上设置点(与相距32m)作为标准点,着陆点在点或超过点视为成绩达标.

    (1)求线段的函数表达式(写出的取值范围).
    (2)当时,着陆点为,求的横坐标并判断成绩是否达标.
    (3)在试跳中发现运动轨迹与滑出速度的大小有关,进一步探究,测算得7组与 的对应数据,在平面直角坐标系中描点如图3.
    ①猜想关于的函数类型,求函数表达式,并任选一对对应值验证.
    ②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?
    (参考数据:,)
    (2022•淮安)
    43.端午节前夕,某超市从厂家分两次购进、两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进品牌粽子100袋和品牌粽子150袋,总费用为7000元;第二次购进品牌粽子180袋和品牌粽子120袋,总费用为8100元.
    (1)求、两种品牌粽子每袋的进价各是多少元;
    (2)当品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当品牌粽子每袋的销售价降低多少元时,每天售出品牌粽子所获得的利润最大?最大利润是多少元?
    (2022•临沂)
    44.第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止本项目.主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:
    下图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,.某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,.在空中飞行过程中,运动员到x轴的距离与水平方向移动的距离具备二次函数关系,其解析式为.

    (1)求b、c的值;
    (2)进一步研究发现运动员在飞行过程中,其水平方向移动的距离与飞行时间具备一次函数关系,当运动员在起跳点腾空时,,;空中飞行5s后着陆.
    ①求x关于t的函数解析式;
    ②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?
    (2022•铜仁市)
    45.为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:
    (1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;
    (2)当批发价定为多少时,每天所获利润最大?最大利润是多少?
    (2022•丹东)
    46.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:
    销售单价x(元/件)

    35
    40
    45

    每天销售数量y(件)

    90
    80
    70

    (1)直接写出y与x的函数关系式;
    (2)若每天销售所得利润为1200元,那么销售单价应定为多少元?
    (3)当销售单价为多少元时,每天获利最大?最大利润是多少元?
    (2022•滨州)
    47.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.
    (1)求y关于x的一次函数解析式;
    (2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.
    (2022•潍坊)
    48.某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图.

    小亮认为,可以从y=kx+b(k>0) ,y=(m>0) ,y=−0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.
    (1)小莹认为不能选.你认同吗?请说明理由;
    (2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;
    (3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?
    (2022•辽宁)
    49.某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.

    (1)求y与x之间的函数关系式;
    (2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?
    (2022•湖北)
    50.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.

    (1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;
    (2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.
    ①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?
    ②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.
    (2022•朝阳)
    51.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.
    (1)求y与x之间的函数关系式.
    (2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?
    (3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?
    (2022•无锡)
    52.某水果店出售一种水果,每箱定价58元时,每周可卖出300箱.试销发现:每箱水果每降价1元,每周可多卖出25箱;每涨价1元,每周将少卖出10箱.已知每箱水果的进价为35元,每周每箱水果的平均损耗费为3元.
    (1)若不进行价格调整,这种水果的每周销售利润为多少元?
    (2)根据以上信息,你认为应当如何定价才能使这种水果的每周销售利润最多?
    (2022•河南)
    53.小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.

    (1)求抛物线的表达式.
    (2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
    (2022•江西)
    54.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点K到起跳台的水平距离为,高度为(h为定值).设运动员从起跳点A起跳后的高度与水平距离之间的函数关系为.

    (1)c的值为__________;
    (2)①若运动员落地点恰好到达K点,且此时,求基准点K的高度h;
    ②若时,运动员落地点要超过K点,则b的取值范围为__________;
    (3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过K点,并说明理由.
    (2022•攀枝花)
    55.第24届冬奥会(也称2022年北京冬奥会)于2022年2月4日至2月20日在中国北京举行,北京成为了历史上第一座既举办过夏奥会又举办过冬奥会的城市.冬奥会上跳台滑雪是一项极为壮观的运动.运动员经过助滑、起跳、空中飞行和着陆,整个动作连贯一致,一气呵成,如图,某运动员穿着滑雪板,经过助滑后,从倾斜角的跳台A点以速度沿水平方向跳出,若忽略空气阻力影响,水平方向速度将保持不变.同时,由于受重力作用,运动员沿竖直方向会加速下落,因此,运动员在空中飞行的路线是抛物线的一部分,已知该运动员在B点着陆,,且.忽略空气阻力,请回答下列问题:

    (1)求该运动员从跳出到着陆垂直下降了多少m?
    (2)以A为坐标原点建立直角坐标系,求该抛物线表达式;
    (3)若该运动员在空中共飞行了4s,求他飞行2s后,垂直下降了多少m?
    2022•宁夏)
    56.北京冬奥会自由式滑雪空中技巧比赛中,某运动员比赛过程的空中剪影近似看作一条抛物线,跳台高度为米,以起跳点正下方跳台底端为原点,水平方向为横轴,竖直方向为纵轴,建立如图所示平面直角坐标系.已知抛物线最高点的坐标为,着陆坡顶端与落地点的距离为米,若斜坡的坡度(即.求:

    (1)点的坐标;
    (2)该抛物线的函数表达式;
    (3)起跳点与着陆坡顶端之间的水平距离的长.(精确到米)(参考数据:)
    (2022•随州)
    57.2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面,某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空.该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数)经过连续15天的销售统计,得到第x天(,且x为正整数)的供应量(单位:个)和需求量(单位:个)的部分数据如下表,其中需求量与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
    第x天
    1
    2

    6

    11

    15
    供应量(个)
    150







    需求量(个)
    220
    229

    245

    220

    164
    (1)直接写出与x和与x的函数关系式;(不要求写出x的取值范围)
    (2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
    (3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
    (2022•无锡)
    58.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).

    (1)若矩形养殖场的总面积为36,求此时x的值;
    (2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?
    (2022•陕西)
    59.现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P到的距离为.

    (1)求满足设计要求的抛物线的函数表达式;
    (2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到的距离均为,求点A、B的坐标.
    (2022•盘锦)
    60.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.

    (1)求y与x的函数关系式(不要求写出自变量x的取值范围);
    (2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?
    (3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?



    参考答案:
    1.C
    【分析】设的长为,矩形的面积为,则的长为,根据矩形的面积公式列二次函数解析式,再分别根据的长不能超过,二次函数的最值,解一元二次方程求解即可.
    【详解】设的长为,矩形的面积为,则的长为,由题意得

    其中,即,
    ①的长不可以为,原说法错误;
    ③菜园面积的最大值为,原说法正确;
    ②当时,解得或,
    ∴的长有两个不同的值满足菜园面积为,说法正确;
    综上,正确结论的个数是2个,
    故选:C.
    【点睛】本题考查了二次函数的应用,解一元二次方程,准确理解题意,列出二次函数解析式是解题的关键.
    2.D
    【分析】根据球弹起后又回到地面时,得到,解方程即可得到答案.
    【详解】解:球弹起后又回到地面时,即,
    解得(不合题意,舍去),,
    ∴球弹起后又回到地面所花的时间(秒)是2,
    故选:D
    【点睛】此题考查了求二次函数自变量的值,读懂题意,得到方程是解题的关键.
    3.C
    【分析】分别计算出三个方案的菜园面积进行比较即可.
    【详解】解:方案1,设米,则米,

    则菜园的面积


    当时,此时散架的最大面积为8平方米;
    方案2,当∠时,菜园最大面积平方米;

    方案3,半圆的半径
    此时菜园最大面积平方米>8平方米,
    故选:C
    【点睛】本题主要考查了同周长的几何图形的面积的问题,根据周长为8米计算三个方案的边长及半径是解本题的关键.
    4.C
    【详解】解:根据题意,把y=﹣4直接代入解析式y=﹣x2
    解得x=±10,
    所以A(﹣10,﹣4),B(10,﹣4),
    即可得水面宽度AB为20m.
    故选C.
    【点睛】本题考查点的坐标的求法及二次函数的实际应用.

    5.A
    【分析】设抛物线解析式为y=a(x﹣2)2+k,将点C(0,8)、B(8,0)代入求出a、k的值即可.
    【详解】解:根据题意,设抛物线解析式为y=a(x﹣2)2+k,
    将点C(0,8)、B(8,0)代入,得:

    解得,
    ∴抛物线解析式为y=﹣(x﹣2)2+9,
    ∴当x=2时,y=9,
    即AD=9m,
    故选:A.
    【点睛】本题考查二次函数的实际应用,解题关键是用待定系数法求出函数的解析式.
    6.A
    【分析】由题意及矩形的面积及周长公式可直接列出函数关系式,然后由函数关系式可直接进行排除选项.
    【详解】解:由题意得:
    ,整理得:,

    ∴y与x成一次函数的关系,S与x成二次函数的关系;
    故选A.
    【点睛】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键.
    7.##2.25米##米##m##米##m
    【分析】以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系,设抛物线的解析式为,将代入求得a值,则时得的y值即为水管的长.
    【详解】解:以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系.
    由于在距池中心的水平距离为时达到最高,高度为,
    则设抛物线的解析式为:

    代入求得:.
    将值代入得到抛物线的解析式为:,
    令,则.
    故水管长度为.
    故答案为:.
    【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,正确建立平面直角坐标系是解题的关键.
    8.
    【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令求平移后的抛物线与轴的交点即可.
    【详解】解:由题意可知:
    、、,
    设抛物线解析式为:,
    将代入解析式,
    解得:,

    消防车同时后退米,即抛物线向左(右)平移米,
    平移后的抛物线解析式为:,
    令,解得:,
    故答案为:.
    【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.
    9.
    【分析】点在轴上,令,代入解析式即可求解.
    【详解】解:令,则,解得:或(不合题意,舍去),
    ∴,
    ∴,
    故答案为:.
    【点睛】本题主要考查二次函数图像的性质,理解题意,掌握二次函数图像与坐标轴交点的计算方法是解题的关键.
    10.4
    【分析】将代入中可求出x,结合图形可知,即可求出OH.
    【详解】解:当时,,解得:或,
    结合图形可知:,
    故答案为:4
    【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.
    11.121
    【分析】利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.
    【详解】解:当时,设,把(10,20),(20,10)代入可得:

    解得,
    ∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为,
    设该食品零售店每天销售这款冷饮产品的利润为w元,

    ∵1<0,
    ∴当时,w有最大值为121,
    故答案为:121.
    【点睛】本题考查二次函数的应用,理解题意,掌握“利润=单价商品利润×销售量”的等量关系及二次函数的性质是解题关键.
    12.8
    【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4,将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.
    【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,
    当喷头高2.5m时,可设y=ax2+bx+2.5,
    将(2.5,0)代入解析式得出2.5a+b+1=0①,
    喷头高4m时,可设y=ax2+bx+4,
    将(3,0)代入解析式得9a+3b+4=0②,
    联立可求出,,
    设喷头高为h时,水柱落点距O点4m,
    ∴此时的解析式为,
    将(4,0)代入可得,
    解得h=8.
    故答案为:8.
    【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.
    13.2
    【分析】将函数关系式转化为顶点式即可求解.
    【详解】根据题意,有,
    当时,有最大值.
    故答案为:2.
    【点睛】本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.
    14.2
    【分析】把一般式化为顶点式,即可得到答案.
    【详解】解:∵h=-5t2+20t=-5(t-2)2+20,
    且-5<0,
    ∴当t=2时,h取最大值20,
    故答案为:2.
    【点睛】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.
    15.8
    【分析】把抛物线解析式化为顶点式,由函数的性质求解即可.
    【详解】解:∵,,
    ∴当x=8时, y有最大值,最大值为4,
    ∴当她与跳台边缘的水平距离为8m时,竖直高度达到最大值.
    故答案为:8.
    【点睛】本题考查二次函数的应用,根据函数的性质求解是解题的关键.
    16.##
    【分析】根据已知得出直角坐标系,通过代入A点坐标(3,0),求出二次函数解析式,再根据把x=4代入抛物线解析式得出下降高度,即可得出答案.
    【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),

    通过以上条件可设顶点式y=ax2+2,把点A点坐标(3,0)代入得,
    ∴,
    ∴,
    ∴抛物线解析式为:;
    当水面下降,水面宽为8米时,有
    把代入解析式,得;
    ∴水面下降米;
    故答案为:;
    【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.
    17.32
    【分析】设围栏垂直于墙的一边长为x米,则平行于墙的一边长为米,列出围栏面积S关于x的二次函数解析式,化为顶点式,即可求解.
    【详解】解:设围栏垂直于墙的一边长为x米,则平行于墙的一边长为米,
    ∴围栏的面积,
    ∴当时,S取最大值,最大值为32,
    故答案为:32.
    【点睛】本题主要考查二次函数的实际应用,根据已知条件列出函数解析式是解题的关键.
    18.
    【分析】根据题意,得-45+3m+n=0,,确定m,n的值,从而确定函数的解析式,根据定义计算确定即可.
    【详解】根据题意,得-45+3m+n=0,,
    ∴ ,
    ∴ ,
    解得m=50,m=10,
    当m=50时,n=-105;当m=10时,n=15;
    ∵抛物线与y轴交于正半轴,
    ∴n>0,
    ∴,
    ∵对称轴为t==1,a=-5<0,
    ∴时,h随t的增大而增大,
    当t=1时,h最大,且(米);当t=0时,h最最小,且(米);
    ∴w=,
    ∴w的取值范围是,
    故答案为:.
    当时,的取值范围是
    ∵对称轴为t==1,a=-5<0,
    ∴时,h随t的增大而减小,
    当t=2时,h=15米,且(米);当t=3时,h最最小,且(米);
    ∴w=,w=,
    ∴w的取值范围是,
    故答案为:.
    【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.
    19.10
    【分析】由图可知,要求OA的长实际是需要点A的横坐标,已知点A的纵坐标为0,将y=0代入函数的解析式,求出x的值,再舍去不符合实际的一个x的值即可.
    【详解】将y=0代入;

    整理得:
    (x-10)(x+2)=0
    解得:x=10或x=-2(舍去)
    ∴铅球推出的水平距离OA的长是10m.
    故答案为:10
    【点睛】本题主要考查了二次函数得实际应用,熟练地掌握二次函数的图象和性质是解题的关键.
    20.
    【分析】根据函数图像分别求出两个函数解析式,表示出,,,,结合h1=2h2,即可求解.
    【详解】解:由题意得,图1中的函数图像解析式为:h=v1t4.9t2,令h=0,或(舍去),,
    图2中的函数解析式为:h=v2t4.9t2, 或(舍去),,
    ∵h1=2h2,
    ∴=2,即:=或=-(舍去),
    ∴t1:t2=:=,
    故答案是:.
    【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图像和性质,二次函数的顶点坐标公式,是解题的关键.
    21.11
    【分析】根据题意列出二次函数关系式,根据二次函数的性质即可得到结论.
    【详解】解:设销售单价定为元,每天所获利润为元,



    所以将销售定价定为11元时,才能使每天所获销售利润最大,
    故答案为11.
    【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.
    22.##7.2
    【分析】a=-5开口方向向下,最大值为顶点y值,由公式可得答案.
    【详解】解:∵h=-5t2+12t,
    ∴a=-5,b=12,c=0,
    ∴足球距地面的最大高度是:=7.2m,
    故答案为:7.2.
    【点睛】本题考查了二次函数的图象和性质,利用二次函数求最值,一是可以通过配方,化为顶点式;二是根据二次函数图象与系数的关系,利用 求出顶点纵坐标.
    23.1264
    【分析】根据题意,总利润=快餐的总利润+快餐的总利润,而每种快餐的利润=单件利润×对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可.
    【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份.
    据题意:,

    ∴,
    ∵,
    ∴当的时候,W取到最大值1264,故最大利润为1264元,
    故答案为:1264.
    【点睛】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点.
    24.3
    【分析】把二次函数化为顶点式,进而即可求解.
    【详解】解:∵,
    ∴当x=1时,,
    故答案是:3.
    【点睛】本题主要考查二次函数的图像和性质,掌握二次函数的顶点式,是解题的关键.
    25.(1)
    (2)销售价格为元时,利润最大为

    【分析】(1)分时,当时,分别待定系数法求解析式即可求解;
    (2)设利润为,根据题意当时,得出,当时,,
    进而根据分时,当时,分别求得最大值,即可求解.
    【详解】(1)当时,设关于的函数表达式为,将点代入得,

    解得:
    ∴,
    当时,设关于的函数表达式为,将点代入得,

    解得:
    ∴,

    (2)设利润为
    当时,
    ∵在范围内,随着的增大而增大,
    当时,取得最大值为;
    当时,
    ∴当时,w取得最大值为

    当销售价格为元时,利润最大为.
    【点睛】本题考查了一次函数的应用,二次函数的应用,根据题意列出函数关系式是解题的关键.
    26.(1)
    (2)护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元

    【分析】(1)用待定系数法求解即可;
    (2)设销售利润为W元,列出W关于x的函数关系式,即可求得最大利润.
    【详解】(1)解:由题意设,
    由表知,当时,;当时,;
    以上值代入函数解析式中得:,
    解得:,
    所以y与x之间的函数关系式为;
    (2)解:设销售利润为W元,
    则,
    整理得:,
    由于销售单价不低于进价,且不高于进价的2倍,则,
    ∵,,
    ∴当时,W随x的增大而增大,
    ∴当时,W有最大值,且最大值为2400;
    答:当护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元.
    27.(1)见解析
    (2)①;;②
    (3)乒乓球恰好落在对面球台边缘点B处时,击球高度的值为

    【分析】(1)根据描点法画出函数图象即可求解;
    (2)①根据二次函数图象的对称性求得对称轴以及顶点,根据表格数据,可得当时,;
    ②待定系数法求解析式即可求解;
    (3)根据题意,设平移后的抛物线的解析式为,根据题意当时,,代入进行计算即可求解.
    【详解】(1)解:如图所示,
      
    (2)①观察表格数据,可知当和时,函数值相等,则对称轴为直线,顶点坐标为,
    又抛物线开口向下,可得最高点时,与球台之间的距离是,
    当时,,
    ∴乒乓球落在对面球台上时,到起始点的水平距离是;
    故答案为:;.
    ②设抛物线解析式为,将代入得,

    解得:,
    ∴抛物线解析式为;
    (3)∵当时,抛物线的解析式为,
    设乒乓球恰好落在对面球台边缘点B处时,击球高度的值为,则平移距离为,
    ∴平移后的抛物线的解析式为,
    依题意,当时,,
    即,
    解得:.
    答:乒乓球恰好落在对面球台边缘点B处时,击球高度的值为.
    【点睛】本题考查了二次函数的应用,画二次函数图象,二次函数图象的平移,熟练掌握二次函数图象的性质是解题的关键.
    28.(1)
    (2)第5个月的销售收入最多,最多为3375万元

    【分析】(1)利用待定系数法即可求解;
    (2)根据销售收入每台的销售价格销售数量求得销售收入为万元与销售月份之间的函数关系,再利用函数的性质即可求解.
    【详解】(1)解:当时,设每台的销售价格与之间的函数关系式为.
    ∵图象过两点,
    ,解得
    ∴当时,每台的销售价格与之间的函数关系式为.
    (2)设销售收入为万元,
    ①当时,,
    ,当时,(万元).            
    ②当时,,

    ∴随的增大而增大,
    ∴当时,(万元).                
    ,∴第5个月的销售收入最多,最多为3375万元.
    【点睛】本题考查了待定系数法求一次函数的解析式、二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.
    29.(1)
    (2)该商品在第26天的日销售利润最大,最大日销售利润是1296元

    【分析】(1)根据利润=单个利润×数量可进行求解;
    (2)由(1)分别求出两种情况下的最大利润,然后问题可求解.
    【详解】(1)解:由题意得:
    当时,则;
    当时,则;
    ∴;
    (2)解:当时,;
    ∵抛物线开口向下,对称轴为直线,
    ∴当时,(元).
    当时,,随增大而减小,
    ∴当时,(元).
    ∵,
    ∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.
    【点睛】本题主要考查二次函数与一次函数的应用,熟练掌握一次函数与二次函数的性质是解题的关键.
    30.(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米
    (2)最多可以购买1400株牡丹

    【分析】(1)设长为x米,面积为y平方米,则宽为米,可以得到y与x的函数关系式,配成顶点式求出函数的最大值即可;
    (2)设种植牡丹的面积为a平方米,则种植芍药的面积为平方米,由题意列出不等式求得种植牡丹面积的最大值,即可解答.
    【详解】(1)解:设长为x米,面积为y平方米,则宽为米,
    ∴,
    ∴当时,y有最大值是1200,
    此时,宽为(米)
    答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米.
    (2)解:设种植牡丹的面积为a平方米,则种植芍药的面积为平方米,
    由题意可得
    解得:,
    即牡丹最多种植700平方米,
    (株),
    答:最多可以购买1400株牡丹.
    【点睛】本题考查二次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.
    31.(1)y关于x的函数表达式为;
    (2)运动员从起跳点到入水点的水平距离的长为.

    【分析】(1)由题意得抛物线的对称轴为,经过点,,利用待定系数法即可求解;
    (2)令,解方程即可求解.
    【详解】(1)解:由题意得抛物线的对称轴为,经过点,,
    设抛物线的表达式为,
    ∴,解得,
    ∴y关于x的函数表达式为;
    (2)解:令,则,
    解得(负值舍去),
    ∴运动员从起跳点到入水点的水平距离的长为.
    【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握运用待定系数法求抛物线的解析式是解题的关键.
    32.(1),,
    (2)选择吊球,使球的落地点到C点的距离更近

    【分析】(1)在一次函数上,令,可求得,再代入即可求得的值;
    (2)由题意可知,令,分别求得,,即可求得落地点到点的距离,即可判断谁更近.
    【详解】(1)解:在一次函数,
    令时,,
    ∴,
    将代入中,可得:,
    解得:;
    (2)∵,,
    ∴,
    选择扣球,则令,即:,解得:,
    即:落地点距离点距离为,
    ∴落地点到C点的距离为,
    选择吊球,则令,即:,解得:(负值舍去),
    即:落地点距离点距离为,
    ∴落地点到C点的距离为,
    ∵,
    ∴选择吊球,使球的落地点到C点的距离更近.
    【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.
    33.(1),球不能射进球门
    (2)当时他应该带球向正后方移动1米射门

    【分析】(1)根据建立的平面直角三角坐标系设抛物线解析式为顶点式,代入A点坐标求出a的值即可得到函数表达式,再把代入函数解析式,求出函数值,与球门高度比较即可得到结论;
    (2)根据二次函数平移的规律,设出平移后的解析式,然后将点代入即可求解.
    【详解】(1)解:由题意得:抛物线的顶点坐标为,
    设抛物线解析式为,
    把点代入,得,
    解得,
    ∴抛物线的函数表达式为,
    当时,,
    ∴球不能射进球门;
    (2)设小明带球向正后方移动米,则移动后的抛物线为,
    把点代入得,
    解得(舍去),,
    ∴当时他应该带球向正后方移动1米射门.
    【点睛】此题考查了二次函数的应用,待定系数法求函数解析式、二次函数图象的平移等知识,读懂题意,熟练掌握待定系数法是解题的关键.
    34.(1)
    (2),

    【分析】(1)利用待定系数法则,求出抛物线的解析式即可;
    (2)在中,令得:,求出或,得出,求出,然后比较大小即可.
    【详解】(1)解:由题意知,方案一中抛物线的顶点,
    设抛物线的函数表达式为,
    把代入得:,
    解得:,
    ∴;
    ∴方案一中抛物线的函数表达式为;
    (2)解:在中,令得:,
    解得或,
    ∴,
    ∴;
    ∵,
    ∴.
    【点睛】本题主要考查了二次函数的应用,求二次函数解析式,解题的关键是熟练掌握待定系数法则,求出函数解析式.
    35.(1),
    (2)时,,当时,
    (3)7天

    【分析】(1)利用待定系数法求待定系数;
    (2)根据“销售额=售价×销售量”列出函数关系式,
    (3)利用二次函数和一次函数的性质分析求解.
    【详解】(1)解:∵第5天售价为50元/千克,第10天售价为40元/千克,
    ∴,解得,
    故答案为:,;
    (2)解:由题意当时,,
    当时,,
    (3)解:由题意当时,,
    ∵,
    ∴当时,最大为,
    当时,,
    由时,解得,
    又∵x为整数,且,
    ∴当时,随的增大而增大,
    ∴第至天,销售额超过1000元,共7天.
    【点睛】本题考查一次函数的应用,二次函数的应用,理解题意,分段分析函数解析式,掌握一次函数和二次函数的性质是解题关键.
    36.(1)的最高点坐标为,,;
    (2)符合条件的n的整数值为4和5.

    【分析】(1)利用顶点式即可得到最高点坐标;点在抛物线上,利用待定系数法即可求得a的值;令,即可求得c的值;
    (2)求得点A的坐标范围为,求得n的取值范围,即可求解.
    【详解】(1)解:∵抛物线,
    ∴的最高点坐标为,
    ∵点在抛物线上,
    ∴,解得:,
    ∴抛物线的解析式为,令,则;
    (2)解:∵到点A水平距离不超过的范围内可以接到沙包,
    ∴点A的坐标范围为,
    当经过时,,
    解得;
    当经过时,,
    解得;

    ∴符合条件的n的整数值为4和5.
    【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.
    37.(1)
    (2)当每盒售价定为65元时,日销售利润W(元)最大,最大利润是元.
    (3)他们的说法正确,理由见解析

    【分析】(1)根据每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,列式计算即可;
    (2)根据销售量乘以每盒的利润得到,根据二次函数的性质即可得到答案;
    (3)设日销售额为元,则,根据二次函数的性质即可判断当日销售利润最大时,日销售额不是最大,即可判断小强的说法;当时,由,解得,由抛物线开口向下,得到当时,,即可判断小红的说法.
    【详解】(1)解:当时,(盒),
    故答案为:
    (2)由题意得,

    又∵,即,
    解得,
    ∵,
    ∴当时,W最大,最大值为,
    ∴当每盒售价定为65元时,日销售利润W(元)最大,最大利润是元.
    (3)他们的说法正确,理由如下:
    设日销售额为元,则

    ∵,
    ∴当时,最大,最大值为,
    ∴当时,最大,此时为,
    即小强的说法正确;
    当时,,解得,
    ∵抛物线开口向下,
    ∴当时,∵,
    ∴当日销售利润不低于元时,每盒售价x的范围为.
    故小红的说法错误.
    【点睛】此题考查了二次函数的应用,根据题意正确列出函数解析式是基础,熟练掌握二次函数的性质和正确计算是解题的关键.
    38.(1)
    (2)当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W最小;
    (3)当a为时,2025年的总种植成本为元.

    【分析】(1)求出当时,设甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系式为,当时,,求出当时的x的值即可;
    (2)当时,,由二次函数性质得到当时,有最小值,最小值为,当时,由一次函数性质得到当时,有最小值,最小值为,比较后即可得到方案;
    (3)根据2025年的总种植成本为元列出一元二次方程,解方程即可得到答案.
    【详解】(1)解:当时,设甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系式为,把点代入得,

    解得,
    ∴当时,,
    当时,,
    ∴当时,,解得,
    即当时,元/;
    故答案为:;
    (2)解:当时,,
    ∵,
    ∴抛物线开口向上,
    ∴当时,有最小值,最小值为,
    当时,,
    ∵,
    ∴随着x的增大而减小,
    ∴当时,有最小值,最小值为,
    综上可知,当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W最小;
    (3)由题意可得,
    解得(不合题意,舍去),
    ∴当a为时,2025年的总种植成本为元.
    【点睛】此题考查了二次函数的应用、一元二次方程的应用、一次函数的应用等知识,读懂题意,正确列出函数解析式和方程是解题的关键.
    39.(1)见解析
    (2)售价每涨价2元,日销售量少卖4盆
    (3)①定价为每盆元或每盆元时,每天获得400元的利润;②售价定为元时,每天能够获得最大利润

    【分析】(1)按照从小到大的顺序进行排列即可;
    (2)根据表格数据,进行求解即可;
    (3)①设定价应为元,根据题意,列出一元二次方程,进行求解即可;
    ②设每天的利润为,列出二次函数表示式,利用二次函数的性质,进行求解即可.
    【详解】(1)解:按照售价从低到高排列列出表格如下:
    售价(元/盆)
    18
    20
    22
    26
    30
    日销售量(盆)
    54
    50
    46
    38
    30
    (2)由表格可知,售价每涨价2元,日销售量少卖4盆;
    (3)①设:定价应为元,由题意,得:

    整理得:,
    解得:,
    ∴定价为每盆元或每盆元时,每天获得400元的利润;
    ②设每天的利润为,由题意,得:

    ∴,
    ∵,
    ∴当时,有最大值为元.
    答:售价定为元时,每天能够获得最大利润.
    【点睛】本题考查一元二次方程和二次函数的实际应用.从表格中有效的获取信息,正确的列出方程和二次函数,是解题的关键.
    40.(1)见解析
    (2)或或或

    【分析】(1)分与两种情况讨论论证即可;
    (2)当时,不符合题意,当时,对于函数,令,得,从而有或,根据整数,使图象与轴的公共点中有整点,即为整数,从而有或或或或或或或,解之即可.
    【详解】(1)解:当时,,函数为一次函数,此时,令,则,解得,
    ∴一次函数与轴的交点为;
    当时,,函数为二次函数,
    ∵,




    ∴当时,与轴总有交点,
    ∴无论取什么实数,图象与轴总有公共点;
    (2)解:当时,不符合题意,
    当时,对于函数,
    令,则,
    ∴,
    ∴或
    ∴或,
    ∵,整数,使图象与轴的公共点中有整点,即为整数,
    ∴或或或或或或或,
    解得或或(舍去)或(舍去)或或或(舍去)或(舍去),
    ∴或或或.
    【点睛】本题主要考查了一次函数的性质,二次函数与一元二次方程之间的关系以及二次函数的性质,熟练掌握一次函数的性质,二次函数与一元二次方程之间的关系,二次函数的性质以及数形相结合的思想是解题的关键.
    41.(1),
    (2)元,
    (3)当时,该工厂应该选择产销A产品能获得最大日利润;当时,该工厂应该选择产销任一产品都能获得最大日利润;当时,该工厂应该选择产销B产品能获得最大日利润,理由见解析

    【分析】(1)根据题木所给的利润计算公式求解即可;
    (2)根据(1)所求利用一次函数和二次函数的性质求解即可;
    (3)比较(2)中所求A、B两种产品的最大利润即可得到答案.
    【详解】(1)解:由题意得,,

    (2)解:∵,
    ∴,
    ∴随x增大而增大,
    ∴当时,最大,最大为元;

    ∵,
    ∴当时,随x增大而增大,
    ∴当时,最大,最大为元;
    (3)解:当,即时,该工厂应该选择产销A产品能获得最大日利润;
    当,即时,该工厂应该选择产销任一产品都能获得最大日利润;
    当,即时,该工厂应该选择产销B产品能获得最大日利润;
    综上所述,当时,该工厂应该选择产销A产品能获得最大日利润;当时,该工厂应该选择产销任一产品都能获得最大日利润;当时,该工厂应该选择产销B产品能获得最大日利润.
    【点睛】本题主要考查了一次函数的实际应用,二次函数的实际应用,一元一次不等式的实际应用,正确理解题意列出对应的函数关系式是解题的关键.
    42.(1)(8≤x≤40)
    (2)的横坐标为22.5,成绩未达标
    (3)①a与成反比例函数关系,,验证见解析;②当m/s时,运动员的成绩恰能达标

    【分析】(1)根据图像得出CE的坐标,直接利用待定系数法即可求出解析式;
    (2)将代入二次函数解析式,由解出x的值,比较即可得出结果;
    (3)由图像可知,a与成反比例函数关系,代入其中一个点即可求出解析式,根据CE的表达式求出K的坐标(32,4),代入即可求出a,再代入反比例函数即可求出v的值.
    【详解】(1)解:由图2可知:,
    设CE:,
    将代入,
    得:,解得,
    ∴线段CE的函数表达式为(8≤x≤40).
    (2)当时,,由题意得,
    解得                                   
    ∴的横坐标为22.5.
    ∵22.5<32,
    ∴成绩未达标.
    (3)①猜想a与成反比例函数关系.
    ∴设
    将(100,0.250)代入得解得,
    ∴.
    将(150,0.167)代入验证:,
    ∴能相当精确地反映a与的关系,即为所求的函数表达式.
    ②由K在线段上,得K(32,4),代入得,得
    由得,
    又∵,
    ∴,
    ∴当m/s时,运动员的成绩恰能达标.
    【点睛】本题考查二次函数的应用,二次函数与一次函数综合问题,解题的关键在于熟练掌握二次函数的性质,并能灵活运用二次函数与一次函数的性质解决问题.
    43.(1)种品牌粽子每袋的进价是25元,种品牌粽子每袋的进价是30元
    (2)当品牌粽子每袋的销售价降低10元时,每天售出品牌粽子所获得的利润最大,最大利润是980元

    【分析】(1)根据已知数量关系列二元一次方程组,即可求解;
    (2)设品牌粽子每袋的销售价降低元,利润为元,列出关于的函数关系式,求出函数的最值即可.
    【详解】(1)解:设种品牌粽子每袋的进价是元,种品牌粽子每袋的进价是元,
    根据题意得,,
    解得,
    故种品牌粽子每袋的进价是25元,种品牌粽子每袋的进价是30元;
    (2)解:设品牌粽子每袋的销售价降低元,利润为元,
    根据题意得,

    ∵,
    ∴当品牌粽子每袋的销售价降低10元时,每天售出品牌粽子所获得的利润最大,最大利润是980元.
    【点睛】本题考查二次函数和二元一次方程的实际应用,根据已知数量关系列出函数解析式和二元一次方程组是解题的关键.
    44.(1),
    (2)①   ②时,最大,为

    【分析】(1)根据题中所给信息,得出,,利用待定系数法列出关于的二元一次方程组求解即可得出结论;
    (2)①根据题意得到当运动员在起跳点腾空时,;空中飞行5s后着陆,,设出一次函数表达式,利用待定系数法求出函数关系式即可;②作轴交抛物线于,交于,利用待定系数法确定直线的函数表达式,再由(1)得出抛物线表达式,求出,表示出运动员离着陆坡的竖直距离,根据抛物线的性质得出当时,有最大值为.
    【详解】(1)解:过作于,于,如图所示:


    着陆坡AC的坡角为30°,即,

    在中,,
    则,

    ,即,,
    将,代入得,解得;
    (2)解:①由(1)知,根据运动员在飞行过程中,其水平方向移动的距离与飞行时间具备一次函数关系,设一次函数关系式为,
    当运动员在起跳点腾空时,;空中飞行5s后着陆,,
    ,解得,
    水平方向移动距离与飞行时间的一次函数关系式为;
    ②作轴交抛物线于,交于,如图所示:

    设直线的表达式为,将,代入得,解得,即直线的表达式为,
    由(1)知抛物线表达式为,

    运动员离着陆坡的竖直距离,
    由可知抛物线开口向下,当时,有最大值为.
    【点睛】本题考查用二次函数及一次函数解决实际问题,涉及到待定系数法确定函数关系式、二次函数的图像与性质、二次函数求最值等知识,熟练掌握二次函数的图像与性质是解决问题的关键.
    45.(1),
    (2)将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.


    【分析】(1)根据题意直接写出y与x之间的函数关系式和自变量的取值范围;
    (2)根据销售利润=销售量×(批发价-成本价),列出销售利润w(元)与批发价x(千元/吨)之间的函数关系式,再依据函数的增减性求得最大利润.
    【详解】(1)解:根据题意得,
    所以每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,
    自变量x的取值范围是
    (2)解:设每天获得的利润为w千元,根据题意得

    ∵,
    ∴当,W随x的增大而增大.
    ∵,
    ∴当时,w有最大值,最大值为,
    ∴将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.
    【点睛】本题考查二次函数应用,解题的关键是读懂题意,列出函数关系式.
    46.(1)y=﹣2x+160
    (2)销售单价应定为50元
    (3)当销售单价为54元时,每天获利最大,最大利润1248元

    【分析】(1)设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y=kx+b,用待定系数法可得y=﹣2x+160;
    (2)根据题意得(x﹣30)•(﹣2x+160)=1200,解方程并由销售单价不低于成本且不高于54元,可得销售单价应定为50元;
    (3)设每天获利w元,w=(x﹣30)•(﹣2x+160)=﹣2x2+220x﹣4800=﹣2(x﹣55)2+1250,由二次函数性质可得当销售单价为54元时,每天获利最大,最大利润,1248元.
    【详解】(1)解:设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y=kx+b,
    把(35,90),(40,80)代入得:,
    解得,
    ∴y=﹣2x+160;
    (2)根据题意得:(x﹣30)•(﹣2x+160)=1200,
    解得x1=50,x2=60,
    ∵规定销售单价不低于成本且不高于54元,
    ∴x=50,
    答:销售单价应定为50元;
    (3)设每天获利w元,
    w=(x﹣30)•(﹣2x+160)=﹣2x2+220x﹣4800=﹣2(x﹣55)2+1250,
    ∵﹣2<0,对称轴是直线x=55,
    而x≤54,
    ∴x=54时,w取最大值,最大值是﹣2×(54﹣55)2+1250=1248(元),
    答:当销售单价为54元时,每天获利最大,最大利润,1248元.
    【点睛】本题考查一次函数,一元二次方程和二次函数的应用,解题的关键是读懂题意,列出函数关系式和一元二次方程.
    47.(1)
    (2)价格为21元时,才能使每月获得最大利润,最大利润为3630元

    【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;
    (2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.
    【详解】(1)解:设,把,和,代入可得

    解得,
    则;
    (2)解:每月获得利润



    ∵,
    ∴当时,P有最大值,最大值为3630.
    答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.
    【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.
    48.(1)认同,理由见解析
    (2)①号田的函数关系式为y=0.5x+1(k>0);②号田的函数关系式为y=−0.1x2+x+1;
    (3)在2023年或2024年总年产量最大,最大是7.6吨.

    【分析】(1)根据年产量变化情况,以及反比例函数的性质即可判断;
    (2)利用待定系数法求解即可;
    (3)设总年产量为w,依题意得w=−0.1x2+x+1+0.5x+1,利用二次函数的性质即可求解.
    【详解】(1)解:认同,理由如下:
    观察①号田的年产量变化:每年增加0.5吨,呈一次函数关系;
    观察②号田的年产量变化:经过点(1,1.9),(2,2.6),(3,3.1),
    ∵1×1.9=1.9,2×2.6=5.2,1.9≠5.2,
    ∴不是反比例函数关系,
    小莹认为不能选是正确的;
    (2)解:由(1)知①号田符合y=kx+b(k>0),
    由题意得,
    解得:,
    ∴①号田的函数关系式为y=0.5x+1(k>0);
    检验,当x=4时,y=2+1=3,符合题意;
    ②号田符合y=−0.1x2+ax+c,
    由题意得,
    解得:,
    ∴②号田的函数关系式为y=−0.1x2+x+1;
    检验,当x=4时,y=-1.6+4+1=3.4,符合题意;
    (3)解:设总年产量为w,
    依题意得:w=−0.1x2+x+1+0.5x+1=−0.1x2+1.5x+2
    =−0.1(x2-15x+-)+2
    =−0.1(x-7.5)2+7.625,
    ∵−0.1<0,∴当x=7.5时,函数有最大值,
    ∴在2023年或2024年总年产量最大,最大是7.6吨.
    【点睛】本题考查了二次函数和一次函数的应用,待定系数法求函数式,二次函数的性质,反比例函数的性质,理解题意,利用二次函数的性质是解题的关键.
    49.(1)(13≤x≤18),
    (2)销售单价定为18元时,该超市每天销售这种商品所获利润最大,最大利润是700元

    【分析】(1)设y与x之间的函数关系式是(13≤x≤18),根据坐标(14,220),(16,180)代入求值即可;
    (2)根据利润=单价利润×销售量,再根据二次函数的性质计算求值即可;
    【详解】(1)解:设y与x之间的函数关系式是(13≤x≤18),由图象可知,
    当时,;当时,,
    ∴,
    解得,
    ∴y与x之间的函数关系式是(13≤x≤18),
    (2)设每天所获利润为w元,



    ∵,
    ∴抛物线开口向下,
    ∴当x<19时,w随x的增大而增大,
    ∵,
    ∴当时,w有最大值,
    (元),
    答:销售单价定为18元时,该超市每天销售这种商品所获利润最大,最大利润是700元;
    【点睛】本题考查了一次函数解析式,二次函数的实际应用,掌握二次函数的图象和性质是解题关键.
    50.(1);
    (2)①种植甲种花卉90m2,乙种花卉270m2时,种植的总费用最少,最少为5625元;
    ②或.

    【分析】(1)根据函数图像分两种情况,时y为常数,时y为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;
    (2)先求出x的范围;
    ①分两段建立w与x的函数关系,即可求出各自的w的最小值,最后比较,即可求出答案案;
    ②分两段利用,建立不等式求解,即可求出答案.
    【详解】(1)由图像可知,当甲种花卉种植面积m2时,费用y保持不变,为30(元/m2),
    所以此区间的函数关系式为:,
    当甲种花卉种植面积m2时,函数图像为直线,
    设函数关系式为:,
    ∵当x=40时,y=30,当x=100时,y=15,代入函数关系式得:

    解得:,

    ∴当时,y与x的函数关系式应为:

    (2)∵甲种花卉种植面积不少于30m2,

    ∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,


    即,
    ①当时,
    由(1)知,,
    ∵乙种花卉种植费用为15元/m2.

    ∴当x=90时,,

    ∴种植甲种花卉90m2,乙种花卉270m2时,种植的总费用最少,最少为5625元;
    ②当时,
    由①知,,
    ∵种植总费用不超过6000元,,


    即满足条件的x的范围为,
    当时,
    由①知,,
    ∵种植总费用不超过6000元,

    (不符合题意,舍去)或,
    即满足条件的x的范围为
    综上,满足条件的x的范围为或.
    【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.
    51.(1)
    (2)13
    (3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.

    【分析】(1)根据给定的数据,利用待定系数法即可求出y与x之间的函数关系式;
    (2)根据每件的销售利润×每天的销售量=425,解一元二次方程即可;
    (3)利用销售该消毒用品每天的销售利润=每件的销售利润×每天的销售量,即可得出w关于x的函数关系式,再利用二次函数的性质即可解决最值问题.
    【详解】(1)解:设y与x之间的函数关系式为,根据题意得:
    ,解得:,
    ∴y与x之间的函数关系式为;
    (2)解:(-5x+150)(x-8)=425,
    整理得:,
    解得:,
    ∵8≤x≤15,
    ∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;
    (3)解:根据题意得:


    ∵8≤x≤15,且x为整数,
    当x<19时,w随x的增大而增大,
    ∴当x=15时,w有最大值,最大值为525.
    答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.
    【点睛】本题考查了待定系数法求一次函数解析式以及二次函数的应用,解题的关键是找准题目的等量关系,
    52.(1)若不进行价格调整,这种水果每周销售利润为6000元;
    (2)当每箱水果定价为54元时,这种水果的每周销售利润最大为6400元.

    【分析】(1)根据已知列式计算即可;
    (2)分两种情况:若每箱水果降价x元,这种水果的每周销售利润为y元,可得:,若每箱水果涨价元,这种水果的每周销售利润为元,有,由二次函数性质可得答案.
    【详解】(1)解:∵(元),
    ∴若不进行价格调整,这种水果每周销售利润为6000元;
    (2)若每箱水果降价x元,这种水果的每周销售利润为y元,
    根据题意得:,
    由二次函数性质可知,当时,y的最大值为6400元;
    若每箱水果涨价元,这种水果的每周销售利润为元,
    根据题意得:,
    由二次函数性质可知,当时,的最大值为6250元;
    综上所述,当每箱水果定价为54元时,这种水果的每周销售利润最大为6400元.
    【点睛】本题考查二次函数的应用,解题的关键是读懂题意,分情况列出函数关系式.
    53.(1)
    (2)2或6m

    【分析】(1)根据顶点,设抛物线的表达式为,将点,代入即可求解;
    (2)将代入(1)的解析式,求得的值,进而求与点的距离即可求解.
    【详解】(1)解:根据题意可知抛物线的顶点为,
    设抛物线的解析式为,
    将点代入,得,
    解得,
    抛物线的解析式为,
    (2)由,令,
    得,
    解得,
    爸爸站在水柱正下方,且距喷水头P水平距离3m,
    当她的头顶恰好接触到水柱时,她与爸爸的水平距离为(m),或(m).
    【点睛】本题考查了二次函数的实际应用,掌握顶点式求二次函数解析式是解题的关键.
    54.(1)66
    (2)①基准点K的高度h为21m;②b>;
    (3)他的落地点能超过K点,理由见解析.

    【分析】(1)根据起跳台的高度OA为66m,即可得c=66;
    (2)①由a=﹣ ,b=,知y=﹣x2+x+66,根据基准点K到起跳台的水平距离为75m,即得基准点K的高度h为21m;
    ②运动员落地点要超过K点,即是x=75时,y>21,故﹣×752+75b+66>21,即可解得答案;
    (3)运动员飞行的水平距离为25m时,恰好达到最大高度76m,即是抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,可得抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=36,从而可知他的落地点能超过K点.
    【详解】(1)解:∵起跳台的高度OA为66m,
    ∴A(0,66),
    把A(0,66)代入y=ax2+bx+c得:
    c=66,
    故答案为:66;
    (2)解:①∵a=﹣,b=,
    ∴y=﹣x2+x+66,
    ∵基准点K到起跳台的水平距离为75m,
    ∴y=﹣×752+×75+66=21,
    ∴基准点K的高度h为21m;
    ②∵a=﹣,
    ∴y=﹣x2+bx+66,
    ∵运动员落地点要超过K点,
    ∴当x=75时,y>21,
    即﹣×752+75b+66>21,
    解得b>,
    故答案为:b>;
    (3)解:他的落地点能超过K点,理由如下:
    ∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,
    ∴抛物线的顶点为(25,76),
    设抛物线解析式为y=a(x﹣25)2+76,
    把(0,66)代入得:
    66=a(0﹣25)2+76,
    解得a=﹣,
    ∴抛物线解析式为y=﹣(x﹣25)2+76,
    当x=75时,y=﹣×(75﹣25)2+76=36,
    ∵36>21,
    ∴他的落地点能超过K点.
    【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.
    55.(1)该运动员从跳出到着陆垂直下降了90m
    (2)
    (3)他飞行2s后,垂直下降了22.5m

    【分析】(1)以A为原点,建立平面直角坐标系.过点B作轴于点D.在中,利用求出即可;
    (2)利用勾股定理求出,得到点B坐标,即可求出抛物线的解析式;
    (3)将代入(2)的解析式求出y值即可.
    【详解】(1)解:如图,以A为原点,建立平面直角坐标系.

    过点B作轴于点D.
    在中,,
    答:该运动员从跳出到着陆垂直下降了90m;
    (2)解:在中,,

    由题意抛物线顶点为,经过.
    设抛物线的解析式为,
    则有,

    抛物线的解析式为.
    (3)解:当时,,
    他飞行2s后,垂直下降了22.5m.
    【点睛】此题考查了抛物线的实际应用,待定系数法求抛物线的解析式,锐角三角函数的应用,已知自变量求函数值,正确理解题意得到对应的数量关系是解题的关键.
    56.(1)
    (2)
    (3)的长约为米

    【分析】(1)由抛物线的图象可直接得出结论;
    (2)由抛物线的顶点可设出抛物线的顶点式,将点A的坐标代入即可得出结论;
    (3)根据勾股定理可得出CE和DE的长,进而得出点D的坐标,由OC的长为点D的横坐标减去DE的长可得出结论.
    【详解】(1)解:∵,且点在轴正半轴,
    ∴.
    (2)∵抛物线最高点的坐标为,
    ∴设抛物线的解析式为:,
    ∵,
    ∴,
    解得.
    ∴抛物线的解析式为:.
    (3)在中,,,
    设CE=3x,DE=4x,
    ∴,
    即,
    解得x=0.5,
    ∴,.
    点的纵坐标为,
    令,
    解得,或不合题意,舍去,
    ∴.
    ∴.
    ∴的长约为米.
    【点睛】本题主要考查二次函数的应用,涉及待定系数法求函数解析式,抛物线上点的坐标特点、解一元二次方程等相关内容,得出点D的坐标是解题关键.
    57.(1),
    (2)m的值为20或21
    (3)第4天的销售额为21000元,第12天的销售额为20900元

    【分析】(1)根据题意“从第二天起,每天比前一天多供应m个(m为正整数)经过连续15天的销售统计,得到第x天(,且x为正整数)的供应量”得到与x的函数关系式;与x满足某二次函数关系,设,利用表格,用待定系数法求得与x的函数关系式;
    (2)用含m的式子表示前9天的总供应量和前10天的总供应量,根据“前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量”列出不等式,求解即可;
    (3)在(2)的条件下,m的最小值为20,代入(1)中与x和与x的函数关系式求得第4天的销售量和第12天的销售量,即可求得销售额.
    【详解】(1)解:由题意可知,,
    即,
    与x满足某二次函数关系,设,
    由表格可知,,解得:,
    即.
    (2)前9天的总供应量为:,
    前10天的总供应量为:,
    第10天的需求量与第2天需求量相同,为229个,
    故前10天的总需求量为;(个),
    依题意可得,
    解得,
    因为m为正整数,故m的值为20或21.
    (3)在(2)的条件下,m的最小值为20,
    第4天的销售量即为供应量:(个),
    故第4天的销售额为:(元),
    第12天的销售量即需求量.(个),
    故第12天的销售额为:(元),
    答:第4天的销售额为21000元,第12天的销售额为20900元.
    【点睛】本题考查关于销售的实际问题,是一次函数和二次函数的综合问题.解题的关键在于正确理解题中的相等和不等关系.
    58.(1)x的值为2m;
    (2)当时,矩形养殖场的总面积最大,最大值为 m2

    【分析】(1)由BC=x,求得BD=3x,AB=8-x,利用矩形养殖场的总面积为36,列一元二次方程,解方程即可求解;
    (2)设矩形养殖场的总面积为S,列出矩形的面积公式可得S关于x的函数关系式,再根据二次函数的性质求解即可.
    【详解】(1)解:∵BC=x,矩形CDEF的面积是矩形BCFA面积的2倍,
    ∴CD=2x,
    ∴BD=3x,AB=CF=DE=(24-BD)=8-x,
    依题意得:3x(8-x)=36,
    解得:x1=2,x2=6(不合题意,舍去),
    此时x的值为2m;

    (2)解:设矩形养殖场的总面积为S,
    由(1)得:S=3x(8-x)=-3(x-4)2+48,
    ∵墙的长度为10,
    ∴0<3x<10,
    ∴0<x<,
    ∵-3<0,
    ∴x<4时,S随着x的增大而增大,
    ∴当x=时,S有最大值,最大值为,
    即当时,矩形养殖场的总面积最大,最大值为 m2.
    【点睛】本题考查了一元二次方程和二次函数在几何图形问题中的应用,数形结合并熟练掌握二次函数的性质是解题的关键.
    59.(1)
    (2)

    【分析】(1)根据题意,设抛物线的函数表达式为,再代入(0,0),求出a的值即可;
    (2)根据题意知,A,B两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而 可解决问题.
    【详解】(1)依题意,顶点,
    设抛物线的函数表达式为,
    将代入,得.解之,得.
    ∴抛物线的函数表达式为.
    (2)令,得.
    解之,得.
    ∴.
    【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.
    60.(1);
    (2)40元或20元;
    (3)当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元;

    【分析】(1)直接由待定系数法,即可求出一次函数的解析式;
    (2)根据题意,设当天玩具的销售单价是元,然后列出一元二次方程,解方程即可求出答案;
    (3)根据题意,列出w与的关系式,然后利用二次函数的性质,即可求出答案.
    【详解】(1)解:由图可知,设一次函数的解析式为,
    把点(25,50)和点(35,30)代入,得
    ,解得,
    ∴一次函数的解析式为;
    (2)解:根据题意,设当天玩具的销售单价是元,则

    解得:,,
    ∴当天玩具的销售单价是40元或20元;
    (3)解:根据题意,则

    整理得:;
    ∵,
    ∴当时,有最大值,最大值为800;
    ∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.
    【点睛】本题考查了二次函数的性质,二次函数的最值,一次函数的应用,解一元二次方程,解题的关键是熟练掌握题意,正确的找出题目的关系,从而进行解题.

    相关试卷

    专题18二次函数的应用(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】: 这是一份专题18二次函数的应用(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题18二次函数的应用优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题18二次函数的应用优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。

    专题31图形的旋转:三年(2021-2023)中考数学真题分项汇编: 这是一份专题31图形的旋转:三年(2021-2023)中考数学真题分项汇编,共140页。试卷主要包含了如图,在中,,,等内容,欢迎下载使用。

    专题30图形的对称与翻折三年(2021-2023)中考数学真题分项汇编: 这是一份专题30图形的对称与翻折三年(2021-2023)中考数学真题分项汇编,共105页。试卷主要包含了下列图形中,是轴对称图形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map