2018年内蒙古通辽市中考数学试卷及答案
展开内蒙古通辽市2018年中考数学真题试题
一、选择题(本题包括10个小题每小题3分共30分)
1.的倒数是( )
A.2018 B.﹣2018 C.﹣ D.
2.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是( )
A. B. C. D.
3.下列说法错误的是( )
A.通过平移或旋转得到的图形与原图形全等 B.“对顶角相等”的逆命题是真命题
C.圆内接正六边形的边长等于半径 D.“经过有交通信号灯的路口,遇到红灯”是随机事件
4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是( )
A. B. C. D.
5.如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是( )
A.18π B.24π C.27π D.42π
6.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为( )
A.﹣=100 B.﹣=100 C.﹣=100 D.﹣=100
7.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A.30° B.60° C.30°或150° D.60°或120°
8.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )
A.亏损20元 B.盈利30元 C.亏损50元 D.不盈不亏
9.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是( )
A. B. C. D.
10.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(本题包括7个小题,每小题3分,共21分)
11.2018年5月13日,我国第一艘国产航母出海试航,这标志着我国从此进入“双航母”时代,据估测该航母的满载排水量与辽宁舰相当,约67500吨,将67500用科学记数法表示为 .
12.如图,∠AOB的一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是 .
13.一组数据2,x,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是 .
14.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为 .
15.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为 .
16.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为 .
17.如图,在平面直角坐标系中,反比例函数y=(k>0)的图象与半径为5的⊙O交于M、N两点,△MON的面积为3.5,若动点P在x轴上,则PM+PN的最小值是 .
三、解答题(本题包括9个小题共69分)
18.(5分)计算:﹣|4﹣|﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2.
19.(6分)先化简(1﹣)÷,然后从不等式2x﹣6<0的非负整数解中选取一个合适的解代入求值.
20.(6分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)
21.(6分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
请根据图表中所提供的信息,完成下列问题:
分组 | 频数 |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
(1)表中a= ,b= ,样本成绩的中位数落在 范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?
22.(7分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
(1)求证:△AEF≌△DEB;(2)若AB=AC,试判 断四边形ADCF的形状,并证明你的结论.
23.(8分)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;
(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.
24.(9分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
25.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.
26.(12分)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.
(1)请直接写出抛物线的解析式及顶点D的坐标;
(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.
②过点F作FH⊥BC于点H,求△PFH周长的最大值.
内蒙古通辽市2018年中考数学真题试题答案
1. A. 2. C. 3. B. 4. B. 5. C. 6. B. 7. D.8. A. 9. D. 10. B.
11. 6.75×104. 12. 75°30′(或75.5°). 13. . 14. .15. x(x﹣1)=21. 16. 9. 17. 5.
18.解:原式=﹣(4﹣2)﹣1+(1﹣)×4=﹣4+2﹣1+4﹣2=﹣1.
19.解:原式=•=•=,
由不等式2x﹣6<0,得到x<3,
∴不等式2x﹣6<0的非负整数解为x=0,1,2,
则x=0时,原式=2.
20.解:如图,作BD⊥AC于D,
由题意可得:BD=1400﹣1000=400(米),
∠BAC=30°,∠BCA=45°,
在Rt△ABD中,
∵,即,
∴AD=400(米),
在Rt△BCD中,
∵,即,
∴CD=400(米),
∴AC=AD+CD=400+400≈1092.8≈1093(米),
答:隧道最短为1093米.
21.解:(1)由统计图可得,
a=8,b=50﹣8﹣12﹣10=20,
样本成绩的中位数落在:2.0≤x<2.4范围内,
故答案为:8,20,2.0≤x<2.4;
(2)由(1)知,b=20,
补全的频数分布直方图如右图所示;
(3)1000×=200(人),
答:该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.
22.证明:(1)∵E是AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,∠EAF=∠EDB,
∴△AEF≌△DEB(AAS);
(2)连接DF,
∵AF∥CD,AF=CD,
∴四边形ADCF是平行四边形,
∵△AEF≌△DEB,
∴BE=FE,
∵AE=DE,
∴四边形ABDF是平行四边形,
∴DF=AB,
∵AB=AC,
∴DF=AC,
∴四边形ADCF是矩形.
23.解:(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;
(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,
补全图形如下:
(3)画树状图为:
共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,
所以书法与乐器组合在一起的概率为=.
24.解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
25.解:(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP,
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC==13cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BC=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
26.解:(1)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5
解得
∴y=x2﹣4x﹣5
∴顶点坐标为D(2,﹣9)
(2)①存在
设直线BC的函数解析式为y=kx+b(k≠0)
把B(5,0),C(0,﹣5)代入得
∴BC解析式为y=x﹣5
当x=m时,y=m﹣5
∴P(m,m﹣5)
当x=2时,y=2﹣5=﹣3
∴E(2.﹣3)
∵PF∥DE∥y轴
∴点F的横坐标为m
当x=m时,y=m2﹣4m﹣5
∴F(m,m2﹣4m﹣5)
∴PF=(m﹣5)﹣(m2﹣4m﹣5)=﹣m2+5m
∵E(2,﹣3),D(2,﹣9)
∴DE=﹣3﹣(﹣9)=6
如图,连接DF
∵PF∥DE
∴当PF=DE时,四边形PEDF为平行四边形
即﹣m2+5m=6
解得m1=3,m2=2(舍去)
当m=3时,y=3﹣5=2
此时P(3,﹣2)
∴存在点P(3,﹣2)使四边形PEDF为平行四边形.
②由题意
在Rt△BOC中,OB=OC=5
∴BC=5
∴C△BOC=10+5
∵PF∥DE∥y轴
∴∠FPE=∠DEC=∠OCB
∵FH⊥BC
∴∠FHP=∠BOC=90°
∴△PFH∽△BCO
∴
即C△PFH=
∵0<m<5
∴当m=﹣时,△PFH周长的最大值为
2022年内蒙古通辽市中考数学试卷: 这是一份2022年内蒙古通辽市中考数学试卷,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2018年内蒙古通辽市中考数学试卷与答案: 这是一份2018年内蒙古通辽市中考数学试卷与答案,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2018年内蒙古通辽市中考数学试卷-(解析版): 这是一份2018年内蒙古通辽市中考数学试卷-(解析版),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。