2019年广东省广州市中考数学试卷-(9年中考)
展开
这是一份2019年广东省广州市中考数学试卷-(9年中考),共57页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2019年广东省广州市中考数学试卷-(9年中考)
一、选择题(共10小题,每小题3分,满分30分)
1.|﹣6|=( )
A.﹣6 B.6 C.﹣ D.
2.广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是( )
A.5 B.5.2 C.6 D.6.4
3.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为( )
A.75m B.50m C.30m D.12m
4.下列运算正确的是( )
A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣ C.x3•x5=x15 D.•=a
5.平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为( )
A.0条 B.1条 C.2条 D.无数条
6.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是( )
A.= B.= C.= D.=
7.如图,□ ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是( )
A.EH=HG B.四边形EFGH是平行四边形
C.AC⊥BD D.△ABO的面积是△EFO的面积的2倍
8.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是( )
A.y3<y2<y1 B.y2<y1<y3 C.y1<y3<y2 D.y1<y2<y3
9.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )
A.4 B.4 C.10 D.8
10.关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值( )
A.0或2 B.﹣2或2 C.﹣2 D.2
二、填空题(共6小题,每小题3分,满分18分)
11.如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是 cm.
12.代数式有意义时,x应满足的条件是 .
13.分解因式:x2y+2xy+y= .
14.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为 .
15.如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为 .(结果保留π)
16.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:
①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是 .(填写所有正确结论的序号)
三、解答题(共9小题,满分102分)
17.(9分)解方程组:.
18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.
19.(10分)已知P=﹣(a≠±b)
(1)化简P;
(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.
20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.
频数分布表
组别
时间/小时
频数/人数
A组
0≤t<1
2
B组
1≤t<2
m
C组
2≤t<3
10
D组
3≤t<4
12
E组
4≤t<5
7
F组
t≥5
4
请根据图表中的信息解答下列问题:
(1)求频数分布表中m的值;
(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;
(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.
21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(1)计划到2020年底,全省5G基站的数量是多少万座?
(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.
22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.
(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.
23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.
(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)
(2)在(1)所作的图中,求四边形ABCD的周长.
24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.
(1)当点F在AC上时,求证:DF∥AB;
(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;
(3)当B,F,E三点共线时.求AE的长.
25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.
(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);
(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;
(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.
2019年广东省广州市中考数学试卷答案
1. B.2. A.3. A.4. D.5. C.6. D.7. B.8. C.9. A.10. D.
11. 5.12. x>8.13. y(x+1)2.14. 15°或45°15. 2π.16.①④.
17.解:,
②﹣①得,4y=2,解得y=2,
把y=2代入①得,x﹣2=1,解得x=3,
故原方程组的解为.
18.证明:∵FC∥AB,
∴∠A=∠FCE,∠ADE=∠F,
在△ADE与△CFE中:
∵,
∴△ADE≌△CFE(AAS).
19.解:(1)P=﹣===;
(2)∵点(a,b)在一次函数y=x﹣的图象上,
∴b=a﹣,
∴a﹣b=,
∴P=;
20.解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;
(2)B组的圆心角=360°×=45°,
C组的圆心角=360°或=90°.
补全扇形统计图如图1所示:
(3)画树状图如图2:
共有12个等可能的结果,
恰好都是女生的结果有6个,
∴恰好都是女生的概率为=.
21.解:(1)1.5×4=6(万座).
答:计划到2020年底,全省5G基站的数量是6万座.
(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,
依题意,得:6(1+x)2=17.34,
解得:x1=0.7=70%,x2=﹣2.7(舍去).
答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.
22.(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,
解得:m=﹣2,
∴正比例函数解析式为y=﹣2x;
将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),
解得:n=1,
∴反比例函数解析式为y=﹣.
联立正、反比例函数解析式成方程组,得:,
解得:,,
∴点A的坐标为(1,﹣2).
(2)证明:∵四边形ABCD是菱形,
∴AC⊥BD,AB∥CD,
∴∠DCP=∠BAP,即∠DCP=∠OAE.
∵AB⊥x轴,
∴∠AEO=∠CPD=90°,
∴△CPD∽△AEO.
(3)解:∵点A的坐标为(1,﹣2),
∴AE=2,OE=1,AO==.
∵△CPD∽△AEO,
∴∠CDP=∠AOE,
∴sin∠CDB=sin∠AOE===.
23.解:(1)如图,线段CD即为所求.
(2)连接BD,OC交于点E,设OE=x.
∵AB是直径,
∴∠ACB=90°,
∴BC===6,
∵BC=CD,
∴=,
∴OC⊥BD于E.
∴BE=DE,
∵BE2=BC2﹣EC2=OB2﹣OE2,
∴62﹣(5﹣x)2=52﹣x2,
解得x=,
∵BE=DE,BO=OA,
∴AD=2OE=,
∴四边形ABCD的周长=6+6+10+=.
24.解:(1)∵△ABC是等边三角形
∴∠A=∠B=∠C=60°
由折叠可知:DF=DC,且点F在AC上
∴∠DFC=∠C=60°
∴∠DFC=∠A
∴DF∥AB;
(2)存在,
过点D作DM⊥AB交AB于点M,
∵AB=BC=6,BD=4,
∴CD=2
∴DF=2,
∴点F在以D为圆心,DF为半径的圆上,
∴当点F在DM上时,S△ABF最小,
∵BD=4,DM⊥AB,∠ABC=60°
∴MD=2
∴S△ABF的最小值=×6×(2﹣2)=6﹣6
∴S最大值=﹣(6﹣6)=3+6
(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,
∵△CDE关于DE的轴对称图形为△FDE
∴DF=DC=2,∠EFD=∠C=60°
∵GD⊥EF,∠EFD=60°
∴FG=1,DG=FG=
∵BD2=BG2+DG2,
∴16=3+(BF+1)2,
∴BF=﹣1
∴BG=
∵EH⊥BC,∠C=60°
∴CH=,EH=HC=EC
∵∠GBD=∠EBH,∠BGD=∠BHE=90°
∴△BGD∽△BHE
∴
∴
∴EC=﹣1
∴AE=AC﹣EC=7﹣
25.解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点
∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3
(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3
∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3
∴抛物线G1顶点坐标为(m+1,﹣m﹣3)
∴x=m+1,y=﹣m﹣3
∴x+y=m+1﹣m﹣3=﹣2
即x+y=﹣2,变形得y=﹣x﹣2
∵m>0,m=x﹣1
∴x﹣1>0
∴x>1
∴y与x的函数关系式为y=﹣x﹣2(x>1)
(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线
x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4
∴函数H的图象恒过点B(2,﹣4)
∵抛物线G:y=m(x﹣1)2﹣m﹣3
x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3
∴抛物线G恒过点A(2,﹣3)
由图象可知,若抛物线与函数H的图象有交点P,则yB<yP<yA
∴点P纵坐标的取值范围为﹣4<yP<﹣3
法二:
整理的:m(x2﹣2x)=1﹣x
∵x>1,且x=2时,方程为0=﹣1不成立
∴x≠2,即x2﹣2x=x(x﹣2)≠0
∴m=>0
∵x>1
∴1﹣x<0
∴x(x﹣2)<0
∴x﹣2<0
∴x<2即1<x<2
∵yP=﹣x﹣2
∴﹣4<yP<﹣3
2011年广东省广州市中考数学试卷
一、选择题(每小题3分,共30分)
1.四个数﹣5,﹣0.1,,中为无理数的是( )
A.﹣5 B.﹣0.1 C. D.
2.已知▱ABCD的周长为32,AB=4,则BC=( )
A.4 B.12 C.24 D.28
3.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是( )
A.4 B.5 C.6 D.10
4.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )
A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)
5.下列函数中,当x>0时,y值随x值增大而减小的是( )
A.y=x2 B.y=x﹣1 C. D.
6.若a<c<0<b,则abc与0的大小关系是( )
A.abc<0 B.abc=0 C.abc>0 D.无法确定
7.下面的计算正确的是( )
A.3x2•4x2=12x2 B.x3•x5=x15 C.x4÷x=x3 D.(x5)2=x7
8.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )
A. B. C. D.
9.当实数x的取值使得有意义时,函数y=4x+1中y的取值范围是( )
A.y≥﹣7 B.y≥9 C.y>9 D.y≤9
10.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为( )
A. B. C.π D.
二、填空题:(每小题3分,共18分)
11.9的相反数是 _________ .
12.已知∠α=26°,则∠α的补角是 _________ 度.
13.方程的解是 _________ .
14.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是 _________ .
15.已知三条不同的直线a、b、c在同一平面内,下列四条命题:
①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.
其中真命题的是 _________ .(填写所有真命题的序号)
16.定义新运算“⊗”,,则12⊗(﹣1)= _________ .
三、解答题(本大题共9大题,满分102分)
17.解不等式组.
18.如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.
求证:△ACE≌△ACF.
19.分解因式:8(x2﹣2y2)﹣x(7x+y)+xy.
20.5个棱长为1的正方体组成如图的几何体.
(1)该几何体的体积是 _________ (立方单位),表面积是 _________ (平方单位)
(2)画出该几何体的主视图和左视图.
21.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.
(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?
(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?
22.某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求a的值;
(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少有1人的上网时间在8~10小时.
23.已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=.
(1)求k的值和边AC的长;
(2)求点B的坐标.
24.已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)
(1)求c的值;
(2)求a的取值范围;
(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.
25.如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.
(1)证明:B、C、E三点共线;
(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;
(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.
2011年广东省广州市中考数学试卷参考答案
一、1. D.2. B. 3. B.4. A.5. D.6. C.7. C.8. D.9. B.10. A.
二、11.﹣9.12. 154.13. x=1.14. 1:2.15.①②④.16. 8.
三、17.解:,
由①得,得x<4,
由②得,得x>﹣,
18.证明:∵AC是菱形ABCD的对角线,
∴∠FAC=∠EAC,
∵AC=AC,AE=AF,
∴△ACE≌△ACF.
19.解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).
20.解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;
∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形,每个正方形的面积为1,
∴组合几何体的表面积为22.故答案为:5,22;
(2)作图如下:
21.解:(1)120×0.95=114(元),
若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;
(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:
y=0.8x+168,
则按方案二可得到一次函数的关系式:
y=0.95x,
如果方案一更合算,那么可得到:
0.8x+168<0.95x,
解得,x>1120,
∴所购买商品的价格在1120元以上时,采用方案一更合算.
22.解:(1)依题意a=50﹣6﹣25﹣3﹣2=14,∴a的值为14;
(2)∵根据图中数据可以知道上网时间在6~8小时的人数有3人,上网时间在8~10小时有2人,
∴从上网时间在6~10小时的5名学生中随机选取2人共有10可能,
其中至少有1人的上网时间在8~10小时有3×2+1=7中可能,
∴P(至少有1人的上网时间在8~10小时)=7÷10=0.7.
23.解:(1)∵点C(1,3)在反比例函数y=的图象上,∴3=,解得k=3,
∵sin∠BAC=∴sin∠BAC==∴AC=5;
(2)①当点B在点A右边时,如图,
∵△ABC是直角三角形,
∴∠DAC=∠DCB,
又∵sin∠BAC=,
∴tan∠DAC=,
∴,
又∵CD=3,
∴BD=,
∴OB=1+=,
∴B(,0);
②当点B在点A左边时,如图,
∵△ABC是直角三角形,
∴∠DAC=∠DCB,
又∵sin∠BAC=,
∴tan∠DAC=,
∴,
又∵CD=3,
∴BD=,BO=BD﹣1=,
∴B(﹣,0)
∴B(﹣,0),(,0).
24.(1)解:把C(0,1)代入抛物线得:1=0+0+c,
解得:c=1,
答:c的值是1.
(2)解:把A(1,0)代入得:0=a+b+1,
∴b=﹣1﹣a,
ax2+bx+1=0,
b2﹣4ac=(﹣1﹣a)2﹣4a=a2﹣2a+1>0,
∴a≠1,
答:a的取值范围是a>0,且a≠1;
(3)证明:∵0<a<1,b=﹣1﹣a,,
∴B在A的右边,
设A(m,0),B(n,0),
∵ax2+(﹣1﹣a)x+1=0,
由根与系数的关系得:m+n=,mn=,
∴AB=n﹣m==,
把y=1代入抛物线得:ax2+(﹣1﹣a)x+1=1,
解得:x1=0,x2=,
∴CD=,
过P作MN⊥CD于M,交X轴于N,
则MN⊥X轴,
∵CD∥AB,
∴△CPD∽△BPA,
∴=,
∴=,
∴PN=,PM=,
∴S1﹣S2=••﹣••=1,
即不论a为何值,
S1﹣S2的值都是常数.
答:这个常数是1.
25.(1)证明:∵AB是直径,
∴∠BCA=90°,
而等腰直角三角形DCE中∠DCE是直角,
∴∠BCA+∠DCE=90°+90°=180°,
∴B、C、E三点共线;
(2)连接BD,AE,ON,延长BD交AE于F,如图1,
∵CB=CA,CD=CE,
∴Rt△BCD≌Rt△ACE,
∴BD=AE,∠EBD=∠CAE,
∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD⊥AE,
又∵M是线段BE的中点,N是线段AD的中点,而O为AB的中点,
∴ON=BD,OM=AE,ON∥BD,AE∥OM;
∴ON=OM,ON⊥OM,即△ONM为等腰直角三角形,
∴MN=OM;
(3)成立.
理由如下:如图2,连接BD1,AE,ON1,
和(2)一样,易证得Rt△BCD1≌Rt△ACE1,
同理可证BD1⊥AE1,△ON1M1为等腰直角三角形,
从而有M1N1=OM1.
2012年广东省广州市中考数学试卷
一、选择题(本大题共10小题,每小题3分,满分30分)
1.实数3的倒数是( )
A.﹣ B. C.﹣3 D.3
2.将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )
A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)2
3.一个几何体的三视图如图所示,则这个几何体是( )
A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱
6.已知|a﹣1|+=0,则a+b=( )
A.﹣8 B.﹣6 C.6 D.8
7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )
A. B. C. D.
8.已知a>b,若c是任意实数,则下列不等式中总是成立的是( )
A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc
9.在平面中,下列命题为真命题的是( )
A.四边相等的四边形是正方形 B.对角线相等的四边形是菱形
C.四个角相等的四边形是矩形 D.对角线互相垂直的四边形是平行四边形
10.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是( )
A.x<﹣1或x>1 B.x<﹣1或0<x<1 C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>1
二、填空题(本大题共6小题,每小题3分,满分18分)
11.已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD= 度.
12.不等式x﹣1≤10的解集是 .
13.分解因式:a3﹣8a=
14.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为 .
15.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为 .
16.如图,在标有刻度的直线l上,从点A开始,
以AB=1为直径画半圆,记为第1个半圆;
以BC=2为直径画半圆,记为第2个半圆;
以CD=4为直径画半圆,记为第3个半圆;
以DE=8为直径画半圆,记为第4个半圆,
…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 倍,第n个半圆的面积为 (结果保留π)
三、解答题(本大题共9小题,满分102分.解答应写出文字说明,证明过程或演算步骤)
17.解方程组.
18.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.
19.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:
(1)这五年的全年空气质量优良天数的中位数是 ,极差是 .
(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是 年(填写年份).
(3)求这五年的全年空气质量优良天数的平均数.
20.已知(a≠b),求的值.
21.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况.
(2)求点A落在第三象限的概率.
22.如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.[来源:Zxxk.Com]
23.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.
(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?
24.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
25.如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.
2012年广东省广州市中考数学试卷参考答案
一、1.B. 2.A. 3.D. 4. C. 5.C. 6. B. 7.A. 8. B. 9. C. 10.D.
二、11. 15 12. x≤11 13. a(a+2)(a﹣2) .14. 2 .15. 3 .16.4 , 22n﹣5π
三、17.
解:,
①+②得,4x=20,
解得x=5,
把x=5代入①得,5﹣y=8,
解得y=﹣3,
所以方程组的解是.
18.
证明:∵在△ABE和△ACD中
,
∴△ABE≌△ACD,
∴BE=CD.
19.
解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:
333、334、345、347、357,
所以中位数是345;
极差是:357﹣333=24;
(2)2007年与2006年相比,333﹣334=﹣1,
2008年与2007年相比,345﹣333=12,
2009年与2008年相比,347﹣345=2,
2010年与2009年相比,357﹣347=10,
所以增加最多的是2008年;
(3)这五年的全年空气质量优良天数的平均数===343.2天.
20.
解:∵+=,
∴=,
∴﹣,
=﹣,
=,
=,
=,
=.
21.
解:(1)如下表,
﹣7
﹣1
3
﹣2
﹣7,﹣2
﹣1,﹣2
3,﹣2
1
﹣7,1
﹣1,1
3,1
6
﹣7,6
﹣1,6
3,6
点A(x,y)共9种情况;
(2)∵点A落在第三象限共有(﹣7,﹣2)(﹣1,﹣2)两种情况,
∴点A落在第三象限的概率是.
22.
解:(1)如图所示,⊙P′即为所求作的圆,⊙P′与直线MN相交;
(2)设直线PP′与MN相交于点A,
在Rt△AP′N中,AN===,
在Rt△APN中,PN===.
23.
解:(1)当x≤20时,y=1.9x;
当x>20时,y=1.9×20+(x﹣20)×2.8=2.8x﹣18;
(2)∵5月份水费平均为每吨2.2元,用水量如果未超过20吨,按每吨1.9元收费.
∴用水量超过了20吨.
2.8x﹣18=2.2x,
解得x=30.
答:该户5月份用水30吨.
24.
解:(1)令y=0,即=0,
解得x1=﹣4,x2=2,
∴A、B点的坐标为A(﹣4,0)、B(2,0).
(2)S△ACB=AB•OC=9,
在Rt△AOC中,AC===5,
设△ACD中AC边上的高为h,则有AC•h=9,解得h=.
如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=﹣1的两个交点即为所求的点D.
设l1交y轴于E,过C作CF⊥l1于F,则CF=h=,
∴CE==.
设直线AC的解析式为y=kx+b,将A(﹣4,0),B(0,3)坐标代入,
得到,解得,∴直线AC解析式为y=x+3.[来源:学.科.网]
直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,
∴直线l1的解析式为y=x+3﹣=x﹣.
则D1的纵坐标为×(﹣1)﹣=,∴D1(﹣4,).
同理,直线AC向上平移个长度单位得到l2,可求得D2(﹣1,)
综上所述,D点坐标为:D1(﹣4,),D2(﹣1,).
(3)如答图2,以AB为直径作⊙F,圆心为F.过E点作⊙F的切线,这样的切线有2条.
连接FM,过M作MN⊥x轴于点N.
∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F半径FM=FB=3.
又FE=5,则在Rt△MEF中,
ME==4,sin∠MFE=,cos∠MFE=.
在Rt△FMN中,MN=MN•sin∠MFE=3×=,
FN=MN•cos∠MFE=3×=,则ON=,
∴M点坐标为(,)
直线l过M(,),E(4,0),
设直线l的解析式为y=kx+b,则有
,解得,
所以直线l的解析式为y=x+3.
同理,可以求得另一条切线的解析式为y=x﹣3.
综上所述,直线l的解析式为y=x+3或y=x﹣3.
25.
解:(1)∵α=60°,BC=10,
∴sinα=,
即sin60°==,
解得CE=5;
(2)①存在k=3,使得∠EFD=k∠AEF.
理由如下:连接CF并延长交BA的延长线于点G,
∵F为AD的中点,
∴AF=FD,
在平行四边形ABCD中,AB∥CD,
∴∠G=∠DCF,
在△AFG和△CFD中,,
∴△AFG≌△CFD(AAS),
∴CF=GF,AG=CD,
∵CE⊥AB,
∴EF=GF(直角三角形斜边上的中线等于斜边的一半),
∴∠AEF=∠G,
∵AB=5,BC=10,点F是AD的中点,
∴AG=5,AF=AD=BC=5,
∴AG=AF,
∴∠AFG=∠G,
在△AFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG(对顶角相等),
∴∠CFD=∠AEF,
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整数k=3,使得∠EFD=3∠AEF;
②设BE=x,∵AG=CD=AB=5,
∴EG=AE+AG=5﹣x+5=10﹣x,
在Rt△BCE中,CE2=BC2﹣BE2=100﹣x2,
在Rt△CEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x,
∵CF=GF(①中已证),
∴CF2=(CG)2=CF2=(200﹣20x)=50﹣5x,
∴CE2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣)2+50+,
∴当x=,即点E是AB的中点时,CE2﹣CF2取最大值,
此时,EG=10﹣x=10﹣=,
CE===,
所以,tan∠DCF=tan∠G===.
2013年广东省广州市中考数学试卷
一、 选择题:
1、 比0大的数是( )
A -1 B C 0 D 1
2、 图1所示的几何体的主视图是( )
3、 在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是( )
4、 A 向下移动1格 B 向上移动1格 C 向上移动2格 D 向下移动2格
4、计算:的结果是( )
A B C D
5、为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a的值是( )
A 全面调查,26 B全面调查,24
C 抽样调查,26 D全面调查,24
6、 已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )
A B C D
7、 实数a在数轴上的位置如图4所示,则=( )
A B C D
8、 若代数式有意义,则实数x的取值范围是( )
A B C D
9、 若,则关于x的一元二次方程的根的情况是( )
A 没有实数根 B有两个相等的实数根 C有两个不相等的实数根 D无法判断
10、 如图5,四边形ABCD是梯形,AD∥BC,CA是的平分线,且则=( )
A B C D
二.填空题(本大题共6小题,每小题3分,满分18分)
11.点P在线段AB的垂直平分线上,PA=7,则PB=______________ .
12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .
13.分解因式:_______________.
14.一次函数若随的增大而增大,则的取值范围是___________ .
15.如图6,的斜边AB=16, 绕点O顺时针旋转后得到,则的斜边上的中线的长度为_____________ .
16.如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,与轴交于O,A两点,点A的坐标为(6,0),的半径为,则点P的坐标为 ____________.
三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)
17.(9分)解方程:.
18.(9分)如图8,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.
19.(10分)先化简,再求值:,其中
20.(10分)已知四边形ABCD是平行四边形(如图9),把△ABD沿对角线BD翻折180°得到△AˊBD.
(1) 利用尺规作出△AˊBD.(要求保留作图痕迹,不写作法);
(2)设D Aˊ 与BC交于点E,求证:△BAˊE≌△DCE.
21.(12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:
11 10 6 15 9 16 13 12 0 8
2 8 10 17 6 13 7 5 7 3
12 10 7 11 3 6 8 14 15 12
(1) 求样本数据中为A级的频率;
(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;
(3) 从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.
22.(12分)如图10, 在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.
(1) 求船P到海岸线MN的距离(精确到0.1海里);
(2) 若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.
23.(12分)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图像经过线段BC的中点D.
(1)求k的值;
(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。
24.(14分)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=OA.
(1)当OC=时(如图12),求证:CD是⊙O的切线;
(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.
①当D为CE中点时,求△ACE的周长;
②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE·ED的值;若不存在,请说明理由。
25、(14分)已知抛物线y1=过点A(1,0),顶点为B,且抛物线不经过第三象限。
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(),求当x≥1时y1的取值范围。
2013广州中考数学参考答案:
一、 DACBD, CBDAB
二、 11、7 12、 13、
14、 15、8 16、
三、17、
18、6
19、原式
20、略
21、(1)
(2)500
(3)
22、(1)15.9
(2)B船先到达
23、
(2)
24(1)略
(2)①
②存在,两个,AE·ED=4
25、(1)
(2)B在第四象限。理由如下
∵
所以抛物线与轴有两个交点
又因为抛物线不经过第三象限
所以,且顶点在第四象限
(3)∵,且在抛物线上,∴
把B、C两点代入直线解析式易得(消去m)
解得
画图易知,C在A的右侧,
∴当时,
2014年广东省广州市中考数学试卷
一、选择题(本大题共10小题,每小题3分,满分30分)
1.()的相反数是( )
(A) (B) (C) (D)
2.下列图形是中心对称图形的是( ).
(A) (B) (C) (D)
3.如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则( )
(A) (B) (C) (D)
图2-① 图2-② 图3
4.下列运算正确的是( )
(A) (B) (C) (D)
5.已知和的半径分别为2cm和3cm,若,则和的位置关系是( )
(A)外离 (B) 外切 (C)内切 (D)相交
6.计算,结果是( )
(A) (B) (C) (D)
7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( )
(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是7
8.将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,( )
(A) (B)2 (C) (D)
9.已知正比例函数()的图象上两点(,)、(,),且,则下列不等式 中恒成立的是( ).
(A) (B) (C) (D)
10.如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;
④.其中结论正确的个数是( )
(A)4个 (B)3个 (C)2个 (D)1个
二、填空题(共6小题,每小题3分,满分18分)
11.中,已知,,则的外角的度数是_____.
12.已知是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点,,则PE的长度为_____.
13.代数式有意义时,应满足的条件为______.
14.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为_______(结果保留).
15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).
16.若关于的方程有两个实数根、,则的最小值为 。
三、解答题(本大题共9小题,满分102分)
17.(分)解不等式:,并在数轴上表示解集.
18.(分)如图5,平行四边形的对角线相交于点,过点且与、分别交于点,求证:.
19.(10分)已知多项式.
(1)化简多项式;
(2)若,求的值.
20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:
(1)求,的值;
(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;
(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.
21.(12分)已知一次函数的图像与反比例函数的图像交于两点,点的横坐标为2.(1)求的值和点的坐标;(2)判断点的象限,并说明理由.
22、(12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
23、(12分) 如图6,中,,.
(1)动手操作:利用尺规作以为直径的,并标出与的交点,与的交点(保留作图痕迹,不写作法):
(2)综合应用:在你所作的圆中:
①求证:;
②求点到的距离.
24.(14分)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C.点P(m,n)(n0,y随x的增大而增大 B、当x=2时,y有最大值-3
C、图像的顶点坐标为(-2,-7) D、图像与x轴有两个交点
10. 定义运算,,若a、b是方程的两根,则的值为 ( )
A、0 B、1 C、2 D、与m有关
二、填空题(本大题共6小题,每小题3分,满分18分.)
11. 分解因式: .
12. 代数式有意义时,实数的取值范围是 .
13. 如图,中,,点在上,,将线段沿方向平移得到线段,点分别落在边上,则的周长是 cm.
14. 方程的解是 .
15. 如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)
16. 如图,正方形的边长为,是对角线,将绕点顺时针旋转450得到, 交于点,连接交于点,连接,则下列结论:
其中正确的结论是 .(填写所有正确结论的序号)
三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明或演算步骤.)
17、(9分)解不等式组:并在数轴上表示解集.
18、(9分)如图,矩形的对角线相交于点,若, 求的度数.
19、(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:
小组
研究报告
小组展示
答辩
甲
91
80
78
乙
81
74
85
丙
79
83
90
(1) 计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:
(2) 如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?
20、(10分)已知
(1) 化简
(2) 若点在反比例函数的图像上,求的值.
21、(12分)如图,利用尺规,在的边上方做,在射线上截取,连接,并证明:
(尺规作图要求保留作图痕迹,不写作法)
22、(12分)如图,某无人机于空中处探测到目标的俯角分别是,此时无人机的飞行高度为,随后无人机从处继续水平飞行m到达处.
(1) 求之间的距离
(2) 求从无人机上看目标的俯角的正切值.
23、(12分)如图,在平面直角坐标系中,直线与轴交于点,与直线交于点,点的坐标为
(1) 求直线的解析式;
(2) 直线与轴交于点,若点是直线上一动点(不与点重合),当与相似时,求点的坐标
24、(14分)已知抛物线与x轴相交于不同的两点,
(1) 求的取值范围
(2) 证明该抛物线一定经过非坐标轴上的一点,并求出点的坐标;
(3) 当时,由(2)求出的点和点构成的的面积是否有最值,若有,求出最值及相对应的值;若没有,请说明理由.
25、(14分)如图,点C为△ABD外接圆上的一动点(点C不在BAD上,且不与点B,D重合),∠ACB=∠ABD=45°.
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证:2AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.
2016年广州市初中毕业生学业考试 数 学答案
一、1.C2.A3.D4.A5.D6.B7.D 8.C9.B10.A
11.12.13.1314.15.16.①②③
三、17.解:
解①得:
解②得:
在数轴上表示为:
18.解: ∵ 四边形ABCD为矩形
∴AO=BO
又∵AB=AO
∴AB=AO=BO
∴△ABD为等边三角形
∴∠ABD=60°
19.解:(1)甲:(91+80+78)÷3=83
乙:(81+74+85)÷3=80
丙:(79+83+90)÷3=84
∴小组的排名顺序为:丙、甲、乙。
(2)甲:91×40%+80×30%+78×30%=83.8
乙:81×40%+74×30%+85×30%=80.1
丙:79×40%+83×30%+90×30%=83.5
∴甲组的成绩最高
20.(1)
(2)∵点P(a,b)在反比例函数的图像上
∴∴∴
21.证明;如图AD,CD为所做
因为,
所以
因为
所以四边形ABCD为平行四边形
所以
22.解:(1)∵∠BAC=90°-30°=60°,AC=60m
∴在Rt△ABC中,有
(2)作DE⊥于点E,连结
∵∠DAC=90°-60°=30°,AC=60m
∴在Rt△ADC中,有x k b 1 . c o m
CD=AC×tan∠DAC=60×tan30°=m
∵∠AED=∠EAC=∠C=90°
∴四边形ACDE是矩形。
∵ED=AC=60m,EA=CD=m
∴在Rt△中,有
即从无人机上看目标D俯角正切值为。
23.(1)设直线AD的解析式为y=kx+b
将点A代入直线y=kx+b中得:
k+b=
b=1 解得:
k=
b=1
直经AD的解析式为:
(2) 设点E的坐标为(m,m+1)
令得x=-2
点B的坐标为(-2,0)
令y=-x+3=0得x=3
点C的坐标为(3,0)
OB=2, OD=1, BC=5, BD=
1. 当△BOD∽△BCE时,如图(1)所示,过点C作CEBC交直线AB于E:
CE=
m+1=,解得m=3
此时E点的坐标为(3,)
2. △BOD∽△BEC时,如图(2)所示,过点E作EFBC于F点,则:
CE=
BE=
BE*CE=EF*BC
EF=2
解得m=2
此时E点的坐标为(2,2)
当△BOD与△BCE相似时,满足条件的E坐标(3,),(2,2).
24. (1)根据根的判别式求出m的取值范围,注意
(2)令,得出,故过定点P(3,4)
(3)利用韦达定理写出AB的长度,再根据m的取值范围,求出面积的范围
[参考答案]
(1) 根据已知可知
所以 所以
所以m的取值范围为且.
(2) 令,则,令得,当时,;当时,;所以抛物线过定点(-1,0),(3,4),因为(-1,0)在x轴上,所以抛物线一定经过非坐标轴上一点P,P的坐标为(3,4
(3) 设A,B的坐标为,则
因为,所以,所以=2AB=
因为,所以,所以,所以当时,有最大值,最大值为=
25.(1)∵弧AB=弧AB, ∴∠ADB=∠ACB
又∵∠ACB=∠ABD=45° ∴∠ABD=∠ADB=45°
∴∠BAD=90° ∴△ABD为等腰直角三角形
∴BD是该外接圆的直径
(2)如图所示作CA⊥AE,延长CB交AE于点E
∵∠ACB=45°,CA⊥AE
∴△ACE为等腰直角三角形 ∴AC=AE
由勾股定理可知CE2=AC2+AE2=2AC2 ∴
由(1)可知△ABD 为等腰直角三角形
∴AB=AD ∠BAD=90° 又∵∠EAC=90°
∴∠EAB+∠BAC=∠DAC+∠BAC ∴∠EAB=∠DAC
∴在△ABE和△ADC中
∴△ABE≌△ADC(SAS)
∴BE=DC
∴CE=BE+BC=DC+BC=
(3)DM2=BM2+2MA2
延长MB交圆于点E,连结AE、DE
∵∠BEA=∠ACB=∠BMA=45°∴在△MAE中有MA=AE,∠MAE=90°∴
又∵AC=MA=AE∴AC=AE
又∵AD=AB∴AC-AD+CE=AE-AB+CE即DE=BC∴DE=BC=MB
∵BD为直径∴∠BED=90°
在RT△MED中,有∴
2017年广东省广州市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )
A.﹣6 B.6 C.0 D.无法确定
2.如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( )
A. B. C. D.
3.某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为( )
A.12,14 B.12,15 C.15,14 D.15,13
4.下列运算正确的是( )
A.= B.2×= C.=a D.|a|=a(a≥0)
5.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )
A.q<16 B.q>16 C.q≤4 D.q≥4
6.如图,⊙O是△ABC的内切圆,则点O是△ABC的( )
A.三条边的垂直平分线的交点 B.三条角平分线的交点 C.三条中线的交点 D.三条高的交点
7.计算(a2b)3•的结果是( )
A.a5b5 B.a4b5 C.ab5 D.a5b6
8.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )
A.6 B.12 C.18 D.24
9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( )
A.AD=2OB B.CE=EO C.∠OCE=40° D.∠BOC=2∠BAD
10.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是( )
A. B. C. D.
二、填空题(本大题共6小题,每小题3分,共18分)
11.如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= .
12.分解因式:xy2﹣9x= .
13.当x= 时,二次函数y=x2﹣2x+6有最小值 .
14.如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= .
15.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= .
16.如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:
①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=
其中正确的结论是 (填写所有正确结论的序号).
三、解答题(本大题共9小题,共102分)
17.(9分)解方程组.
18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.
19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).
绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:
(1)E类学生有 人,补全条形统计图;
(2)D类学生人数占被调查总人数的 %;
(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.
20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.
(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)
(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.
21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.
(1)求乙队筑路的总公里数;
(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.
22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.
(1)求m和k的值;
(2)结合图象求不等式3x+m>的解集.
23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.
(1)求y1的解析式;
(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.
24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.
(1)求证:四边形OCED是菱形;
(2)连接AE,若AB=6cm,BC=cm.
①求sin∠EAD的值;
②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.
25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.
(1)求证:∠CAB=45°;
(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.
①试探究AE与AD之间的是数量关系,并证明你的结论;
②是否为定值?若是,请求出这个定值;若不是,请说明理由.
2017年广东省广州市中考数学试卷参考答案
一、1. B2. A.3. C4. D.5. A.6. B.7.A.8.C.9.D.10. D.
二、11. 70°.12. x(y﹣3)(y+3).13. 1、5.14. 17.15. 3.16. ①③;
三、17.解:,
①×3﹣②得:x=4,
把x=4代入①得:y=1,
则方程组的解为.
18.解:∵AE=BF,
∴AE+EF=BF+EF,
∴AF=BE,
在△ADF与△BCE中,
∴△ADF≌△BCE(SAS)
19.解:(1)E类学生有50﹣(2+3+22+18)=5(人),
补全图形如下:
故答案为:5;
(2)D类学生人数占被调查总人数的×100%=36%,
故答案为:36;
(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,
从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,
其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,
∴这2人做义工时间都在2<t≤4中的概率为.
20.解:(1)如图所示,DE即为所求;
(2)由题可得,AE=AC=,∠A=30°,
∴Rt△ADE中,DE=AD,
设DE=x,则AD=2x,
∴Rt△ADE中,x2+()2=(2x)2,
解得x=1,
∴△ADE的周长a=1+2+=3+,
∵T=(a+1)2﹣a(a﹣1)=3a+1,
∴当a=3+时,T=3(3+)+1=10+3.
21.解:(1)60×=80(公里).
答:乙队筑路的总公里数为80公里.
(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,
根据题意得:﹣=20,
解得:x=0.1,
经检验,x=0.1是原方程的解,
∴8x=0.8.
答:乙队平均每天筑路0.8公里.
22.解:(1)由平移得:y=3x+1﹣1=3x,
∴m=0,
当y=3时,3x=3,
x=1,
∴A(1,3),
∴k=1×3=3;
(2)画出直线y=3x和反比例函数y=的图象:如图所示,
由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.
23.解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.
∴B(﹣1,1)或(﹣1,9),
∴﹣=﹣1,=1或9,
解得m=﹣2,n=0或8,
∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;
(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),
∵y1的对称轴与y2交于点A(﹣1,5),
∴y1与y2都经过x轴上的同一点(﹣2,0),
把(﹣1,5),(﹣2,0)代入得,
解得,
∴y2=5x+10.
②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,
∵y2随着x的增大而增大,且过点A(﹣1,5),
∴y1与y2都经过x轴上的同一点(﹣4,0),
把(﹣1,5),(﹣4,0)代入得,
解得;
∴y2=x+.
24.(1)证明:∵四边形ABCD是矩形.
∴OD=OB=OC=OA,
∵△EDC和△ODC关于CD对称,
∴DE=DO,CE=CO,
∴DE=EC=CO=OD,
∴四边形CODE是菱形.
(2)①设AE交CD于K.
∵四边形CODE是菱形,
∴DE∥AC,DE=OC=OA,
∴==
∵AB=CD=6,
∴DK=2,CK=4,
在Rt△ADK中,AK===3,
∴sin∠DAE==,
②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,
∵点Q的运动时间t=+=OP+AP=OP+PF,
∴当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,
∴OF=CD=3.AF=AD=,PF=DK=1,
∴AP==,
∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为,点Q走完全程所需的时间为3s.
25.解:(1)如图1,连接BC,
∵AB是⊙O的直径,∴∠ACB=90°,
∵AC=BC,∴∠CAB=∠CBA==45°;
(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,
由(1)知△ACB是等腰直角三角形,
∵OA=OB=OC,
∴△BOC为等腰直角三角形,
∵l是⊙O的切线,∴OC⊥l,
又BF⊥l,
∴四边形OBFC是矩形,∴AB=2OC=2BF,
∵BD=AB,∴BD=2BF,∴∠BDF=30°,
∴∠DBA=30°,∠BDA=∠BAD=75°,
∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,
∴∠DEA=∠CEB=90°﹣∠CBE=75°,
∴∠ADE=∠AED,∴AD=AE;
②当∠ABD为钝角时,如图3所示,
同理可得BF=BD,即可知∠BDC=30°,
∵OC⊥AB、OC⊥直线l,
∴AB∥直线l,
∴∠ABD=150°,∠ABE=30°,
∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,
∵AB=DB,
∴∠ADB=∠ABE=15°,
∴∠BEC=∠ADE,
∴AE=AD;
(3)①如图2,当D在C左侧时,
由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,
∴△CAD∽△BAE,
∴==,
∴AE=CD,
作EI⊥AB于点I,
∵∠CAB=45°、∠ABD=30°,
∴BE=2EI=2×AE=AE=×CD=2CD,
∴=2;
②如图3,当点D在点C右侧时,过点E作EI⊥AB于I,
由(2)知∠ADC=∠BEA=15°,
∵AB∥CD,
∴∠EAB=∠ACD,
∴△ACD∽△BAE,
∴==,
∴CD,
∵BA=BD,∠BAD=∠BDA=15°,
∴∠IBE=30°,
∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.
2018年广东省广州市中考数学试卷
一、选择题(本大题共10小题,每小题3分,满分30分)
1.四个数0,1,,中,无理数的是( )
A. B.1 C. D.0
2.如图所示的五角星是轴对称图形,它的对称轴共有( )
A.1条 B.3条 C.5条 D.无数条
3.如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )
A. B. C. D.
4.下列计算正确的是( )
A.(a+b)2=a2+b2 B.a2+2a2=3a4 C.x2y÷=x2(y≠0) D.(﹣2x2)3=﹣8x6
5.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )
A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4
6.甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )
A. B. C. D.
7.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )
A.40° B.50° C.70° D.80°
8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A. B. C. D.
9.一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是( )
A. B. C. D.
10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A.504m2 B.m2 C.m2 D.1009m2
二、填空题(本大题共6小题,每小题3分,满分18分.)
11.已知二次函数y=x2,当x>0时,y随x的增大而 (填“增大”或“减小”).
12.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC= .
13.方程=的解是 .
14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是 .
15.如图,数轴上点A表示的数为a,化简:a+= .
16.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.
其中正确的结论有 .(填写所有正确结论的序号)
三、解答题(本大题共9小题,满分102分)
17.(9分)解不等式组:.
18.(9分)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.
19.(10分)已知T=+.
(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.
20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
(1)这组数据的中位数是 ,众数是 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.
(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?
(2)若该公司采用方案二购买更合算,求x的取值范围.
22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.
(1)求y1关于x的函数解析式,并画出这个函数的图象;
(2)若反比例函数y2=的图象与函数y1的图象相交于点A,且点A的纵坐标为2.
①求k的值;
②结合图象,当y1>y2时,写出x的取值范围.
23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,
①证明:AE⊥DE;
②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.
24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).
(1)证明:该抛物线与x轴总有两个不同的交点;
(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.
①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;
②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.
25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.
(1)求∠A+∠C的度数;
(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;
(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.
2018年广东省广州市中考数学试卷参考答案
一、1. A.2. C.3. B.4. D.5. B.6. C.7. D.8. D.9. A.10.A.
二、11.增大.12. 13. x=2 14.(﹣5,4).15. 2.16.①②④.
三、17.解:,
解不等式①,得x>﹣1,
解不等式②,得x<2,
不等式①,不等式②的解集在数轴上表示,如图
,
原不等式组的解集为﹣1<x<2.
18.证明:在△AED和△CEB中,
,
∴△AED≌△CEB(SAS),∴∠A=∠C(全等三角形对应角相等).
19.解:(1)T=+==;
(2)由正方形的面积为9,得到a=3,
则T=.
20.解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,
故答案是16,17;
(2)=14,
答:这10位居民一周内使用共享单车的平均次数是14次;
(3)200×14=2800
答:该小区居民一周内使用共享单车的总次数为2800次.
21.解:设购买A型号笔记本电脑x台时的费用为w元,
(1)当x=8时,
方案一:w=90%a×8=7.2a,
方案二:w=5a+(8﹣5)a×80%=7.4a,
∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;
(2)∵若该公司采用方案二购买更合算,
∴x>5,
方案一:w=90%ax=0.9ax,
方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,
则0.9ax>a+0.8ax,
x>10,∴x的取值范围是x>10.
22.解:(1)由题意y1=|x|.
函数图象如图所示:
(2)①当点A在第一象限时,由题意A(2,2),
∴2=,∴k=4.
同法当点A在第二象限时,k=﹣4,
②观察图象可知:①当k>0时,x>2时,y1>y2或x<0时,y1>y2.
②当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.
23.解:(1)如图,∠ADC的平分线DE如图所示.
(2)①延长DE交AB的延长线于F.
∵CD∥AF,∴∠CDE=∠F,∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,
∵AD=AB+CD=AB+BF,∴CD=BF,
∵∠DEC=∠BEF,∴△DEC≌△FEB,∴DE=EF,
∵AD=AF,∴AE⊥DE.
②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.
∵AD=AF,DE=EF,
∴AE平分∠DAF,则△AEK≌△AEB,
∴AK=AB=4,
在Rt△ADG中,DG==4,
∵KH∥DG,
∴=,
∴=,
∴KH=,
∵MB=MK,
∴MB+MN=KM+MN,
∴当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为GH的长,
∴BM+MN的最小值为.
24.解:(1)令y=0,
∴x2+mx﹣2m﹣4=0,
∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,
∵m>0,
∴△>0,
∴该抛物线与x轴总有两个不同的交点;
(2)
令y=0,
∴x2+mx﹣2m﹣4=0,
∴(x﹣2)[x+(m+2)]=0,
∴x=2或x=﹣(m+2),
∴A(2,0),B(﹣(m+2),0),
∴OA=2,OB=m+2,
令x=0,
∴y=﹣2(m+2),
∴C(0,﹣2(m+2)),
∴OC=2(m+2),
①通过定点(0,1)理由:如图,
∵点A,B,C在⊙P上,
∴∠OCB=∠OAF,
在Rt△BOC中,tan∠OCB===,
在Rt△AOF中,tan∠OAF===,
∴OF=1,
∴点F的坐标为(0,1);
②如图1,由①知,点F(0,1),
∵D(0,1),
∴点D在⊙P上,
∵点E是点C关于抛物线的对称轴的对称点,
∴∠DCE=90°,
∴DE是⊙P的直径
∴∠DBE=90°,
∵∠BED=∠OCB,
∴tan∠BED=,
设BD=m,
在Rt△BDE中,tan∠BED===,
∴BE=2m,
根据勾股定理得,DE==m,
∴l=BD+BE+DE=(3+)m,r=DE=m,
∴==.
25.解:(1)如图1中,
在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°,∠B=60°,∠C=30°,
∴∠A+∠C=360°﹣60°﹣30°=270°.
(2)如图2中,结论:DB2=DA2+DC2.
理由:连接BD.以BD为边向下作等边三角形△BDQ.
∵∠ABC=∠DBQ=60°,
∴∠ABD=∠CBQ,
∵AB=BC,DB=BQ,
∴△ABD≌△CBQ,
∴AD=CQ,∠A=∠BCQ,
∵∠A+∠BCD=∠BCQ+∠BCD=270°,
∴∠BCQ=90°,
∴DQ2=DC2+CQ2,
∵CQ=DA,DQ=DB,
∴DB2=DA2+DC2.
(3)如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.
则△AER是等边三角形,∵EA2=EB2+EC2,EA=RE,EC=RB,
∴RE2=RB2+EB2,
∴∠EBR=90°,
∴∠RAE+∠RBE=150°,
∴∠ARB+∠AEB=∠AEC+∠AEB=210°,
∴∠BEC=150°,
∴点E的运动轨迹在O为圆心的圆上,在⊙O上取一点K,连接KB,KC,OB,OC,
∵∠K+∠BEC=180°,
∴∠K=30°,∠BOC=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴点E的运动路径==.
相关试卷
这是一份2019年广东省广州市中考数学试卷,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2019年广东省广州市中考数学试卷及答案,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2018年广东省广州市中考数学试卷及答案,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。