2019年广东省深圳市中考数学试卷-(9年中考)
展开这是一份2019年广东省深圳市中考数学试卷-(9年中考),共39页。试卷主要包含了选择题,填空题,解答题 17.0等内容,欢迎下载使用。
1.﹣的绝对值是( )
A.﹣5B.C.5D.﹣
2.下列图形中是轴对称图形的是( )
A.B.C.D.
3.预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为( )
A.4.6×109B.46×107C.4.6×108D.0.46×109
4.下列哪个图形是正方体的展开图( )
A. B. C. D.
5.这组数据20,21,22,23,23的中位数和众数分别是( )
A.20,23B.21,23C.21,22D.22,23
6.下列运算正确的是( )
A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2
7.如图,已知l1∥AB,AC为角平分线,下列说法错误的是( )
A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠3
8.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为( )
A.8B.10C.11D.13
9.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为( )
A.B.C.D.
10.下面命题正确的是( )
A.矩形对角线互相垂直B.方程x2=14x的解为x=14
C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等
11.定义一种新运算n•xn﹣1dx=an﹣bn,例如2xdx=k2﹣n2,若﹣x﹣2dx=﹣2,则m=( )
A.﹣2B.﹣C.2D.
12.已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个( )
①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.
A.1B.2C.3D.4
二、填空题(每小题3分,共4小题,满分12分)
13.分解因式:ab2﹣a= .
14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是 .
15.如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF= .
16.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k= .
三、解答题 17.(5分)计算:﹣2cs60°+()﹣1+(π﹣3.14)0
18.(6分)先化简(1﹣)÷,再将x=﹣1代入求值.
19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.
(1)这次共抽取 名学生进行调查,扇形统计图中的x= ;
(2)请补全统计图;
(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;
(4)若该校有3000名学生,请你佔计该校喜爱“二胡”的学生约有 名.
20.(8分)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cs53°≈,tan53°≈).
21.(8分)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.
(1)求焚烧1吨垃圾,A和B各发电多少度?
(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.
22.(9分)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.
(1)求抛物线的解析式及其对称轴;
(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.
(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.
23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.
(1)求证:直线OD是⊙E的切线;
(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;
①当tan∠ACF=时,求所有F点的坐标 (直接写出);②求的最大值.
2019年广东省深圳市中考数学试卷答案
1. B.2. A.3. C.4. B.5. D.6. C.7. B.8. A.9. C.10. D.11. B.12. D.
13. a(b+1)(b﹣1)14. .15. .16. .
17.解:原式=3﹣2×+8+1
=3﹣1+8+1
=11.
18.解:原式=×
=x+2,
将x=﹣1代入得:
原式=x+2=1.
19.解:(1)80÷40%=200,x=×100%=15%,
故答案为:200;15%;
(2)喜欢二胡的学生数为200﹣80﹣30﹣20﹣10=60,
补全统计图如图所示,(3)扇形统计图中“扬琴”所对扇形的圆心角是:360°×=36°,
故答案为:36;
(4)3000×=900,
答:该校喜爱“二胡”的学生约有有900名.
故答案为:900.
20.解:在Rt△ABD中,AB=AD=600,
作EM⊥AC于M,
则AM﹣DE=500,
∴BM=100,
在Rt△CEM中,tan53°===,
∴CM=800,
∴BC﹣CM=800﹣100=700(米),
答:隧道BC长为700米.
21.解:(1)设焚烧1吨垃圾,A发电厂发电x度,B发电厂发电y度,根据题意得:
,解得,
答:焚烧1吨垃圾,A发电厂发电300度,B发电厂发电260度;
(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90﹣x)吨垃圾,总发电量为y度,则
y=300x+260(90﹣x)=40x+23400,
∵x≤2(90﹣x),
∴x≤60,
∵y随x的增大而增大,
∴当x=60时,y有最大值为:40×60+23400=25800(元).
答:A厂和B厂总发电量的最大是25800度.
22.解:(1)∵OB=OC,∴点B(3,0),
则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,
故﹣3a=3,解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+2x+3…①;
(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,
故CD+AE最小时,周长最小,
取点C关于函数对称点C(2,3),则CD=C′D,
取点A′(﹣1,1),则A′D=AE,
故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,
四边形ACDE的周长的最小值=AC+DE+CD+AE=+A′D+DC′=+A′C′=+;
(3)如图,设直线CP交x轴于点E,
直线CP把四边形CBPA的面积分为3:5两部分,
又∵S△PCB:S△PCA=EB×(yC﹣yP):AE×(yC﹣yP)=BE:AE,
则BE:AE,=3:5或5:3,
则AE=或,
即:点E的坐标为(,0)或(,0),
将点E、C的坐标代入一次函数表达式:y=kx+3,
解得:k=﹣6或﹣2,
故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②
联立①②并解得:x=4或8(不合题意值已舍去),
故点P的坐标为(4,﹣5)或(8,﹣45).
23.解:(1)证明:如图1,连接DE,∵BC为圆的直径,
∴∠BDC=90°,
∴∠BDA=90°
∵OA=OB
∴OD=OB=OA
∴∠OBD=∠ODB
∵EB=ED
∴∠EBD=∠EDB
∴EBD+∠OBD=∠EDB+∠ODB
即:∠EBO=∠EDO
∵CB⊥x轴
∴∠EBO=90°
∴∠EDO=90°
∵点D在⊙E上
∴直线OD为⊙E的切线.
(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,
∵F1N⊥AC
∴∠ANF1=∠ABC=90°
∴△ANF∽△ABC
∴
∵AB=6,BC=8,
∴AC===10,即AB:BC:AC=6:8:10=3:4:5
∴设AN=3k,则NF1=4k,AF1=5k
∴CN=CA﹣AN=10﹣3k
∴tan∠ACF===,解得:k=
∴
即F1(,0)
如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,
∵△AMF2∽△ABC
∴设AM=3k,则MF2=4k,AF2=5k
∴CM=CA+AM=10+3k
∴tan∠ACF=
解得:
∴AF2=5k=2
OF2=3+2=5
即F2(5,0)
故答案为:F1(,0),F2(5,0).
②如图4,∵CB为直径
∴∠CGB=∠CBF=90°
∴△CBG∽△CFB
∴
∴BC2=CG•CF
CF=
∵CG2+BG2=BC2,
∴BG2=BC2﹣CG2
∴==
∴=
令y=CG2(64﹣CG2)=﹣CG4+64CG2=﹣[(CG2﹣32)2﹣322]=﹣(CG2﹣32)2+322
∴当CG2=32时,
此时CG=4
==.
2011年广东省深圳市中考数学试卷
一.(共12小题,每小题3分,共36分。)
1.的相反数等于( )
A. B. C.-2 D.2
2.如图1所示的物体是一个几何体,其主视图是( )
A. B. C. D. 图1
3.今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( )
A.5.6×103 B.5.6×104 C.5.6×105 D.0.56×105
4.下列运算正确的是( )
A.x2+x3=x5 B.(x+y)2=x2+y2 C.x2·x3=x6 D.(x2)3=x6
5.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为( )
A.4 B.4.5 C.3 D.2
6.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )
A.100元 B.105元 C.108元 D.118元
7.如图2,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是( )
A
B
C
图2 A. B. C. D.
8.如图3是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字。如果同时转动两个转盘各一次(指针落在等分线上重转),当转盘停止后,则指针指向的数字和为偶数的概率是( )
A. B. C. D.
9.已知a,b,c均为实数,若a>b,c≠0。下列结论不一定正确的是( )
A. B. C. D.
10.对抛物线而言,下列结论正确的是( )
A.与x轴有两个交点 B.开口向上 C.与y轴的交点坐标是(0,3) D.顶点坐标为(1,-2)
11.下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线; ②平分弦的直径垂直于弦;
③若是方程x-ay=3的一个解,则a=-1;
④若反比例函数的图像上有两点(,y1),(1,y2),则y1
12.如图4,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为( )
A
B
C
图7
x
y
O
A
B
C
D
F
E
O
图4
A. B. C.5:3 D.不确定
O
A
B
图5
图3
1
2
3
6
7
8
二.填空题(共4小题,每小题3分,共12分。)
13.分解因式:a3-a=______________________。
14.如图5,在⊙O中,圆心角∠AOB=120°,弦AB=cm,则OA=___________cm。
15.如图6,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的
周长是=______________________。
……
(1) (2) (3) (4) ……
图6
16.如图7,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为:,则tanA的值是___________。
三.解答题(共7小题,其中第17小题5分,第18小题6分,第19小题7分,第20小题8分,第21小题8分,第22小题9分,第23小题9分,共52分)
17.(5分)计算:。
18.(6分)解分式方程:。
19.(7分)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍)。图8是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
人数
100
80
60
40
漫画
科普常识
其他
种类
小说
0
20
80
40
20
25%
小 说
30%
科普常识
漫画
其他
(1)这次活动一共调查了_________名学生;
(2)在扇形统计图中,“其他”所在扇形圆心角等于_________度; (3)补全条形统计图;
(4)若该年级有600人,请你估计该年级喜欢“科普常识”的学生人数约是_________人。
O
A
E
C
B
D
图10
O
A
E
C
B
D
图9
20.如图9,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长交⊙O于点E,连接AE。(1)求证:AE是⊙O的直径;(2)如图10,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和。(结果保留π与根号)
图11
A
B
D
C
C′
G
G
图12
A
B
D
C
E
C′
N
M
21.(8分)如图11,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G。(1)求证:AG=C′G;(2)如图12,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长。
出
发
地
目
的
地
甲 地
乙 地
A 馆
800元∕台
700元∕台
B 馆
500元∕台
600元∕台
表1
出
发
地
目
的
地
甲 地
乙 地
A 馆
x(台)
_______(台)
B 馆
_______(台)
_______(台)
表2
22.(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:
(1)设甲地运往A馆的设备有x台,请填写表2,并求出总费用y(元)与x(台)的函数关系式;
(2)要使总费用不高于20200元,请你帮忙该公司设计调配方案,并写出有哪几种方案;
(3)当x为多少时,总运费最小,最小值是多少?
23.(9分)如图13,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴
于点D,其中点B的坐标为(3,0)。(1)求抛物线的解析式;(2) 如图14,过点A的直线与抛物线
交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的
一动点,则x轴上师范存在一点H,使D、G、H、F四点所围成的四边形周长最小。若存在,求出这个
最小值及点G、H的坐标;若不存在,请说明理由。(3) 如图15,在抛物线上是否存在一点T,过点T
作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD。
若存在,求出点T的坐标;若不存在,请说明理由。
图13
A
B
x
y
O
D
C
图14
A
B
x
y
O
D
C
P
Q
E
F
图15
A
B
x
y
O
D
C
深圳市2011年初中毕业生学业考试
数 学 试 卷·参 考 答 案
第一部分:选择题
第二部分:填空题:
13、a(a+1)(a-1) 14、4 15、2+n 16、
解答题:
17、原式
18、解:方程两边同时乘以:(x+1)(x-1),得:
人数
100
80
60
40
漫画
科普常识
其他
种类
小说
0
20
80
40
60
20
图1
2x (x-1)+3(x+1)=2(x+1)(x-1)
整理化简,得
x=-5
经检验,x=-5是原方程的根
原方程的解为:
x=-5
(备注:必须验根,没有验根的扣2分)
19、(1)200; (2)36; (3)如图1; (4)180
O
A
E
C
B
D
图2
20、(1)证明:如图2,连接AB、BC,
∵点C是劣弧AB上的中点
∴
∴CA=CB
又∵CD=CA
∴CB=CD=CA
∴在△ABD中,
∴∠ABD=90° ∴∠ABE=90° ∴AE是⊙O的直径
(2)解:如图3,由(1)可知,AE是⊙O的直径
O
A
E
C
B
D
图3
∴∠ACE=90°
∵⊙O的半径为5,AC=4 ∴AE=10,⊙O的面积为25π
在Rt△ACE中,∠ACE=90°,由勾股定理,得:
∴S△ACE=∴S阴影=S⊙O-S△ACE=
图4
A
B
D
C
C′
G
21、(1)证明:如图4,由对折和图形的对称性可知,
CD=C′D,∠C=∠C′=90°
在矩形ABCD中,AB=CD,∠A=∠C=90°
∴AB= C′D,∠A=∠C′
在△ABG和△C′DG中,
∵AB= C′D,∠A=∠C′,∠AGB=∠C′GD
∴△ABG≌△C′DG(AAS) ∴AG=C′G
(2)解:如图5,设EM=x,AG=y,则有:
G
图5
A
B
D
C
E
C′
N
M
C′G=y,DG=8-y,,
在Rt△C′DG中,∠DC′G=90°,C′D=CD=6,
∴ C′G2+C′D2=DG2
即:y2+62=(8-y)2
解得:
∴C′G=cm,DG=cm
又∵△DME∽△DC′G ∴ , 即:
解得:, 即:EM=(cm)
∴所求的EM长为cm。
22、解:(1)表2如右图所示,依题意,得:
出
发
地
目
的
地
甲 地
乙 地
A 馆
x(台)
_______(台)
B 馆
_______(台)
_______(台)
表2
18-x
17-x x-3
y=800x+700(18-x)+500(17-x)+600(x-3)
即:y=200x+19300(3≤x≤17)
(2)∵要使总运费不高于20200元
∴200x+19300<20200
解得:
∵3≤x≤17,且设备台数x只能取正整数
∴ x只能取3或4。∴该公司的调配方案共有2种,具体如下表:
甲 地
乙 地
A 馆
3台
15台
B 馆
14台
0台
甲 地
乙 地
A 馆
4台
14台
B 馆
13台
1台
表3 表4
(3)由(1)和(2)可知,总运费y为:
y=200x+19300(x=3或x=4)
由一次函数的性质,可知:
当x=3时,总运费最小,最小值为:ymin=200×3+19300=19900(元)。
答:当x为3时,总运费最小,最小值是19900元。
23、解:(1)设所求抛物线的解析式为:y=a(x-1)2+4,依题意,将点B(3,0)代入,得:
a(3-1)2+4=0
解得:a=-1
∴所求抛物线的解析式为:y=-(x-1)2+4
(2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
∵点E在抛物线上且点E的横坐标为2,将x=2代入抛物线y=-(x-1)2+4,得
E
F
图6
A
B
x
y
O
D
C
Q
I
G
H
P
y=-(2-1)2+4=3
∴点E坐标为(2,3)
又∵抛物线y=-(x-1)2+4图像分别与x轴、y轴交于点A、B、D
∴当y=0时,-(x-1)2+4=0,∴ x=-1或x=3
当x=0时,y=-1+4=3,
∴点A(-1,0),点B(3,0),点D(0,3)
又∵抛物线的对称轴为:直线x=1,
∴点D与点E关于PQ对称,GD=GE…………………②
分别将点A(-1,0)、点E(2,3)代入y=kx+b,得:
E
F
图6
A
B
x
y
O
D
C
Q
I
G
H
P
解得:
过A、E两点的一次函数解析式为:y=x+1
∴当x=0时,y=1
∴点F坐标为(0,1)
∴………………………………………③
又∵点F与点I关于x轴对称,
∴点I坐标为(0,-1)
∴………④
又∵要使四边形DFHG的周长最小,由于DF是一个定值,
∴只要使DG+GH+HI最小即可
由图形的对称性和①、②、③,可知,
DG+GH+HF=EG+GH+HI
只有当EI为一条直线时,EG+GH+HI最小
设过E(2,3)、I(0,-1)两点的函数解析式为:y=k1x+b1(k1≠0),
分别将点E(2,3)、点I(0,-1)代入y=k1x+b1,得:
解得:
过A、E两点的一次函数解析式为:y=2x-1
∴当x=1时,y=1;当y=0时,x=;
∴点G坐标为(1,1),点H坐标为(,0)
∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI
由③和④,可知:
图7
A
B
x
y
O
D
C
M
T
N
DF+EI=
∴四边形DFHG的周长最小为。
(3)如图7,由题意可知,∠NMD=∠MDB,
要使,△DNM∽△BMD,只要使即可,
即:MD2=NM×BD………………………………⑤
设点M的坐标为(a,0),由MN∥BD,可得
△AMN∽△ABD,
∴
再由(1)、(2)可知,AM=1+a,BD=,AB=4
∴
∵MD2=OD2+OM2=a2+9,
∴⑤式可写成: a2+9=×
解得:
a=或a=3(不合题意,舍去)
∴点M的坐标为(,0)
又∵点T在抛物线y=-(x-1)2+4图像上,
∴当x=时,y=
∴点T的坐标为(,)
2012年广东省深圳市中考数学试卷
一、选择题:(共12个小题,每小题3分,共36分.)
1.-3的倒数是( )
A.3 B.-3
2.第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高.将数143 300 000 000用科学记数法表示为( )
3.下列图形中,既是轴对称图形,又是中心对称图形的是( )
4.下列运算正确的是( )
5.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( )
A.平均数 B.频数分布 C.中位数 D.方差
6.如图1所示,一个60角的三角形纸片,剪去这个600角后,得到 一个四边形,则么的度数为( )
A. 120O B. 180O. C. 240O D. 3000
7.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是( )
8.下列命题
方程的解是 ②4的平方根是2
③有两边和一角相等的两个三角形全等 ④连接任意四边形各边中点的四边形是平行四边形
其中真命题有( )
A.4个 B.3个 C.2个 D.1个
9.如图2,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BM0=120,则⊙C的半径长为( )
A.6 B.5 C.3
10.已知点P(a+l,2a -3)关于x轴的对称点在第一象限,则a的取值范围是( )
11.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图3,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l米、垂直于地面放置的标杆在地面上的 影长为2米,则树的高度为( )
米 米 米 D.10米
12.如图4,已知:∠MON=30,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7 的边长为( )
A.6 B.12 C.32 D.64
二、填空题(本题共4小题,每小题3分,共12分) .
13.分解因式:
14.二次函数的最小值是 .[来源:学。科。网]
15.如图5,双曲线与⊙O在第一象限内交于P、Q 两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为 .
16.如图6,Rt△ABC中,C= 90,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 .
三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第
21题8分,第22题9分,第23题9分,共52分)
17.(5分)计算:
18.(6分)已知a= -3,b=2,求代数式的值.
19.(7分)为了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机
抽查了部分参赛同学的成绩,整理并制作图表如下:
请根据以上图表提供的信息,解答下列问题:
(1)本次调查的样本容量为
(2)在表中:m= .n= ;
(3)补全频数分布直方图:
(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩
落在 分数段内;
(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是
20.(8分)如图7,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、 交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;
(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.
21.(8分)“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如右表所示:
(1)在不超出现有资金前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机
的数量的3倍.请问商场有哪几种进货方案?(2)在“2012年消费促进月”促销活动期问,商家针对这三种节能型)品推出“现金每 购满1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下若三种电器在活动期间全部售出,商家预估最多送出消费券多少张?
22.(9分)如图8,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).
(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;[来源:Z&x
(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与△ABC相似吗?
请说明理由.
23.(9分)如图9,在平面直角坐标系中,直线:y=-2x+b (b≥0)的位置随b的不同取值而变化.
(1)已知⊙M的圆心坐标为(4,2),半径为2.
当b= 时,直线:y=-2x+b (b≥0)经过圆心M:
当b= 时,直线:y= -2x+b(b≥0)与OM相切:
(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、BC6,O)、C(6,2).
设直线扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,
2012年广东省深圳市中考数学试卷答案
一.1. D。2. B.3. A.4. B.5. D。6. C。7. B。8. D。9. C。10. B。11.A。 12. C。
二、13. 。 14. 5。 15. 4。16.7.
三、17.解:原式=。
18.解:原式=。
当= -3,=2时,原式= 。
19.解:(1)300.
(2)120;0.3。
(3)补全频数分布直方图如图:
20.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFC。
由折叠的性质,可得:∠AEF=∠CEF,AE=CE,AF=CF,∴∠EFC=∠CEF。
∴CF=CE。∴AF=CF=CE=AE。∴四边形AFCE为菱形。
(2)解:a、b、c三者之间的数量关系式为:a2=b2+c2。理由如下:
由折叠的性质,得:CE=AE。
∵四边形ABCD是矩形,∴∠D=90°。
∵AE=a,ED=b,DC=c,∴CE=AE=a。
在Rt△DCE中,CE2=CD2+DE2,
∴a、b、c三者之间的数量关系式可写为:a2=b2+c2。
21.解:(1)设购进电视机x台,则洗衣机是x台,空调是(40-2x)台,
根据题意得: , 解得:8≤x≤10。
∵x是整数,从8到10共有3个正整数,∴有3种进货方案:
方案一:购进电视机8台,洗衣机是8台,空调是24台;
方案二:购进电视机9台,洗衣机是9台,空调是22台;
方案三:购进电视机10台,洗衣机是10台,空调是20台;
(2)三种电器在活动期间全部售出的金额y=5500x+2160x+2700(40-2x),
即y=2260x+10800。
∵y=2260x+10800是单调递增函数,∴当x最大时,y的值最大。
∵x的最大值是10,∴y的最大值是:2260×10+10800=33400(元)。
∵现金每购1000元送50元家电消费券一张,
∴33400元,可以送33张家电消费券。
22.解:(1)∵抛物线经过A(-4,0)、B(1,0),∴设函数解析式为:y=a(x+4)(x-1)。
又∵由抛物线经过C(-2,6),∴6=a(-2+4)(-2-1),解得: a=-1。
∴经过A、B、C三点的抛物线解析式为:y=-(x+4)(x-1),即y=-x2-3x+4。
(2)证明:设直线BC的函数解析式为y=kx+b,
由题意得: ,解得:。
∴直线BC的解析式为y=-2x+2.
∴点E的坐标为(0,2)。
∴。
∴AE=CE。
(3)相似。理由如下:
设直线AD的解析式为y=k1x+b1,则 ,解得:。
∴直线AD的解析式为y=x+4。
联立直线AD与直线BC的函数解析式可得:,解得:。
∴点F的坐标为( )。
则。
又∵AB=5,,
∴。∴。
又∵∠ABF=∠CBA,∴△ABF∽△CBA。
∴以A、B、F为顶点的三角形与△ABC相似。
23.解:(1)10;。
(2)由A(2,0)、B(6,0)、C(6,2),根据矩形的性质,得D(2,2)。
如图,当直线经过A(2,0)时,b=4;当直线经过D(2,2)时,b=6;当直线经过B(6,0)时,b=12;当直线经过C(6,2)时,b=14。
当0≤b≤4时,直线扫过矩形ABCD的面积S为0。
当4<b≤6时,直线扫过矩形ABCD的面积S为△EFA的面积(如图1),
在 y=-2x+b中,令x=2,得y=-4+b,则E(2,-4+b),
令y=0,即-2x+b=0,解得x=,则F(,0)。
∴AF=,AE=-4+b。
∴S=。
当6<b≤12时,直线扫过矩形ABCD的面积S为直角梯形DHGA的面积(如图2),
在 y=-2x+b中,令y=0,得x=,则G(,0),[来源:Z#xx#k.Cm]
令y=2,即-2x+b=2,解得x=,则H(,2)。
∴DH=,AG=。AD=2
∴S=。
当12<b≤14时,直线扫过矩形ABCD的面积S为五边形DMNBA的面积=矩形ABCD的面积-△CMN的面积(如图2)
在 y=-2x+b中,令y=2,即-2x+b=2,解得x=,则M(,0),
令x=6,得y=-12+b,,则N(6,-12+b)。
∴MC=,NC=14-b。
∴S=。
当b>14时,直线扫过矩形ABCD的面积S为矩形ABCD的面积,面积为民8。
综上所述。S与b的函数关系式为:
。
2013年广东省深圳市中考数学试卷
一、选择题(共10小题,每小题3分,共30分)
1、的值是( )
A、 B、– C、3 D、–3
2、在2008年5月18日晚由央电视台承办的《爱的奉献》——2008年抗震救灾大型募捐活动中,深圳市慈善会捐款1.3亿元。用科学记数法表示“1.3亿”应记为( )
A、1.3×1010 B、1.3×109 C、1.3×108D、13×107
3、如图1所示的几何体的俯视图是( )
图1 A B C D
4、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A B C D
5、不等式组的解集在数轴上表示正确的是( )
–1
0
1
2
–1
0
1
2
–1
0
1
2
–1
0
1
2
A B C D
6、不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同。从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是( )
A、 B、 C、 D、
7、小明是学生会的干部,上周值周时他对我校迟到的学生进行了统计,统计结果如下表:
则这组数据:2,4,5,6,3的方差是( )
A、2 B、 C、10 D、
8、下列命题,假命题是( )
A.平行四边形的两组对边分别相等。B.两组对边分别相等的四边形是平行四边形。
C.矩形的对角线相等。 D.对角线相等的四边形是矩形。
9、如图2,数学兴趣小组的小颖想测量教学楼前的一棵树的树高。下午课外活动时她测得一根长为1m的竹杆的影长是0.8m。但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图)。他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是( )
A、3.25m B、4.25m C、4.45m D、4.75m
10、如图3,梯形ABCD中,AD//BC,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积是( )
A、48 B、36 C、18 D、24
图4
A
B
C
D
图3
图2
二、填空题:(共5小题,每小题3分,共15分)
11、函数的自变量的取值范围是_______________。
12、分解因式:ax2–2ax + a = _______________________。
13、观察下列等式(式子中的“!”是一种数学运算符号)
1! = 1,2! = 2×1,3! = 3×2×1,4! = 4×3×2×1,……,
那么计算:=_______。m
14、如图4,A、B、C是⊙O上的三点,∠AOB°,则∠ACB的度数是
15、二次函数的部分对应值如下表:
则当时对应的函数值 .
三、解答题(共7小题,其中第16题6分,第17题6分,第18题7分,第19题8分,第20题9分,第21题9分,第22题10分, 共55分)
16、(6分)计算:2sin60º+-–|1–|
17、(6分)解方程:
18、(7分)如图5, F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连结AE、BD,求证:四边形ABDE是平行四边形
图5
19、(8分)图6是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图。
(1)(2分)求该班有多少名学生?
(2)(2分)补上骑车分布直方图的空缺部分;
(3)(2分)在扇形统计图中,求步行人数所占的圆心角度数。
(4)(2分)若全年级有800人,估计该年级乘车人数。
20
12
乘车
骑车
步行
乘车50%
50%
骑车
20%
步行
30%
图6
20、(9分)在“五·一”期间,某公司组织员工外出某地旅游。甲、乙两家旅行社为了吸引更多的顾客,分别推出了赴该地旅游的团体优惠办法。甲旅行社的优惠办法是:买4张全票,其余人按原价五折优惠;乙旅行社的优惠办法是:一律按原价6折优惠。已知这两家旅行社的原价均为a元,且在旅行过程中的各种服务质量相同。如果你是该公司的负责人,你会选择哪家旅行社。
21、(9分)如图7,四边形ABCD内接于⊙O,BD是⊙O的直径,AECD于E,DA平分BDE
(1)(4分)求证:AE是⊙O的切线(2)(5分)若DBC=30 º ,DE=1cm ,求BD的长
A
B
C
E
D
O
图7
22、(10分)如图8,抛物线y = ax2 + bx + c经过A(1,0)、B(5,0)两点,最低点的纵坐标为
–4,与y轴交于点C。⌒
⌒
(1)(3分)求该抛物线的函数解析式;
(2)(3分)如图8 -1,若△ABC的外接圆⊙O1交y轴不同于点C的点D,且CD = AB,求tan∠ACB的值。(3)(4分)如图8 – 2,设⊙O1的弦DE//x轴,在x轴上是否存在点F,使△OCF与△CDE相似?若存在,求出所有符合条件的点F的坐标;若不存在,请说明理由。
x
y
C
D
O
A
B
E
O1
图8-2
x
y
C
D
O
A
B
O1
图8 - 1
2013年广东省深圳市中考数学试卷参考答案
一、
二、11、x≥2 12、a ( x–1 )2 13、 14、43 15、-8
三、16、 (第一步每对一个得1分,共4分,最后得出正确答案得满分6分)
17、无解 (正确去分母得2分,整理得x=1得3分,验根知无解得1分,共6分)
20
12
8
乘车
骑车
步行
18、证明△ABC≌△DEF得AB= DE(方法不唯一,共7分)
19、解:(1)40人 (本小题2分)
(2)见直方图 (本小题2分)
(3)圆心角度数==108º (本小题2分)
(4)估计该年级乘车人数=800×50%=400 (本小题2分)
20、解:设有x人参加旅游 (1分)
当 时, (4分)
当 时, (6分)
当 时, (8分)
答:当参加人数为20人时,任选取一家;当参加人数少于20人时,选乙旅行社;当参加人数多于20人时,选甲旅行社。 (9分) (方法不唯一)
21、(1)提示:连结OA,证明 (本小题4分)
(2)BD=4 cm (本小题5分)m
22、(1)抛物线的函数解析式为:y = x2–6x + 5 (本小题3分)
⌒
⌒
(2)tan∠ACB = 。提示:过点O1作O1P⊥x轴于P,连结O1A,由抛物线与圆的对称性可知O1P所在的直线是抛物线的对称轴。故OP=3,AP = OP–OA = 2,由CD = AB得:CD=AB=4
过点O1作O1Q⊥y轴于Q,由垂径定理得:DQ=CQ=2,O1P = OQ =OC–CQ = 3,故
tan∠ACB = tan∠AO1P = (本小题3分)
(3)存在点F,点F的坐标分别为:
F1(,0)、F2(,0)、F3(,0)、F4(,0)
(适当写出过程,每求出一个点得1分)
2014年广东省深圳市中考数学试卷
选择题(共12个小题,每小题3分,共36分.)
1.9的相反数( )
A.-9 B.9 C. ±9 D.
2.下列图形中是轴对称图形但不是中心对称图形的是( )
A.B. C. D.
3.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为( )
A.4.73×108B.4.73×109C.4.73×1010D.4.73×1011
4.由几个大小相同的正方形组成的几何图形如图所示,则它的俯视图( )
A B C D
5.在-2,1,2,1,4,6中正确的是( )
A.平均数3 B.众数是-2 C.中位数是1 D.极差为8
6.已知函数y=ax+b经过(1,3)(0,-2)求a-b( )
A.-1 B.-3 C.3 D.7
7.下列方程没有实数根的是( )
A、x²+4x=10 B、3x²+8x-3=0 C、x²-2x+3=0 D、(x-2)(x-3)=12
8.如图、△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )
A、AC∥DF B、∠A=∠D C、AC=DF D、∠ACB=∠F
9.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,文抽取的两个球数字之和大于6的概率是( )
A. B. C. D.
10.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12,的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )
A. B. C. D.
11.二次函数图像如图所示,下列正确的个数为( )
① ② ③ ④ 有两个解,⑤ ⑥ 当时,随增大而减小
A. 2 B. 3 C. 4 D. 5
12.如图,已知四边形ABCD为等腰梯形,AD//BC,AB=CD,E为CD中点,连接AE,且AE=,,∠DAE=30°,作AE⊥AF交BC于F,则BF=( )
A.1 B. C. D.
第11题 第12题 第15题
填空题(每题3分,满分12分)
13.因式分解:
14.
15.如图所示,双曲线经过Rt△BOC斜边上的点A,且满足,与BC交于点D, ,求k=
16.如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有
……
解答题(共7小题,共72分.)
17.计算:-2tan60°+(-1)0-()-1
18.先化简,再求值:,在-2,0,1,2四个数中选一个合适的代入求值.
19.关于体育选考项目统计图
(1)求出表中a,b,c的值,并将条形统计图补充完整.
表中a= 200 ,b= 0.4 ,c= 60 .
(2)如果有3万人参加体育选考,会有多少人选择篮球?
20.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形
(2)若AF=DF=5,AD=6,求AC的长
21.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同。(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?
22.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于,与y轴交于,点C为劣弧
的中点,连接AC并延长到D,使,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;
(3)在直线MC上找一点P,使最大.
23.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,-4),(1)求抛物线解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,求当△BEF与△BAO相似时,E点坐标;(3)记平移后抛物线与AB另一个交点为G,则 QUOTE \* MERGEFORMAT 与 QUOTE \* MERGEFORMAT 是否存在8倍的关系,若有,写出F点坐标。
2014年广东省深圳市中考数学试卷答案
一、1. A.2. B.3. B.4. A.5.D.6. D.7. C.8. C.9. C.10.B.11. B.12.D.
二、13. 2(x+2)(x﹣2).14.3.15. 8.16. 485.
三、17.解:原式=2﹣2+1﹣3=﹣2.
18.解:原式=•=2x+8,
当x=1时,原式=2+8=10.
19.解:(1)a=20÷0.1=200,
c=200×0.3=60,
b=80÷200=0.4,
故答案为:200,0.4,60,
补全条形统计图如下:
(2)30000×0.4=12000(人).
答:3万人参加体育选考,会有12000人选择篮球.
20.(1)证明:∵BD垂直平分AC,
∴AB=BC,AD=DC,
在△ADB与△CDB中,
,
∴△ADB≌△CDB(SSS)
∴∠BCD=∠BAD,
∵∠BCD=∠ADF,
∴∠BAD=∠ADF,
∴AB∥FD,
∵BD⊥AC,AF⊥AC,
∴AF∥BD,
∴四边形ABDF是平行四边形,
(2)解:∵四边形ABDF是平行四边形,AF=DF=5,
∴▱ABDF是菱形,
∴AB=BD=5,
∵AD=6,
设BE=x,则DE=5﹣x,
∴AB2﹣BE2=AD2﹣DE2,
即52﹣x2=62﹣(5﹣x)2
解得:x=,
∴=,
∴AC=2AE=.
21.解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得
=
解得x=15,
则x+10=25,
经检验x=15是原方程的根,
答:甲进货价为25元,乙进货价15元.
(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得
解得55<m<58
所以m=56,57
则100﹣m=44,43.
有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.
22.(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,
∴AB=5,
∴圆的半径为;
(2)证明:由题意可得出:M(2,)
又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)
过 D 作 DH⊥x 轴于 H,设 MC 与 x 轴交于 K,
则△ACK∽△ADH,
又∵DC=4AC,
故 DH=5KC=5,HA=5KA=10,
∴D(﹣6,﹣5)
设直线AB表达式为:y=ax+b,
,
解得:
故直线AB表达式为:y=﹣x+3,
同理可得:根据B,D两点求出BD的表达式为y=x+3,
∵KAB×KBD=﹣1,
∴BD⊥AB,BD为⊙M的切线;
(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,
此P点为所求,且线段DO的长为|DP﹣AP|的最大值;
设直线DO表达式为 y=kx,
∴﹣5=﹣6k,
解得:k=,
∴直线DO表达式为 y=x
又∵在直线DO上的点P的横坐标为2,y=,
∴P(2,),
此时|DP﹣AP|=DO==.
23.解:(1)直线AB的解析式为y=2x+4,
令x=0,得y=4;令y=0,得x=﹣2.
∴A(﹣2,0)、B(0,4).
∵抛物线的顶点为点A(﹣2,0),
∴设抛物线的解析式为:y=a(x+2)2,
点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,
∴抛物线的解析式为y=﹣(x+2)2.
(2)平移过程中,设点E的坐标为(m,2m+4),
则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,
∴F(0,﹣m2+2m+4).
①∵点E为顶点,∴∠BEF≥90°,
∴若△BEF与△BAO相似,只能是点E作为直角顶点,
∴△BAO∽△BFE,
∴,即,可得:BE=2EF.
如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).
∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),
∴BH=|2m|,FH=|﹣m2|.
在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,
又∵BE=2EF,∴BH=4FH,
即:4|﹣m2|=|2m|.
若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);
若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.
∴m=﹣,
∴E(﹣,3).
②假设存在.
联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),
∴S△ACD=×4×4=8.
∵S△EFG与S△ACD存在8倍的关系,
∴S△EFG=64或S△EFG=1.
联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).
∴点E与点M横坐标相差2,即:|xG|﹣|xE|=2.
如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|xG|﹣|xE|)=BF.
∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.
∴|﹣m2+2m|=64或|﹣m2+2m|=1,
∴﹣m2+2m可取值为:64、﹣64、1、﹣1.
当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.
∴﹣m2+2m可取值为:﹣64、1、﹣1.
∵F(0,﹣m2+2m+4),
∴F坐标为:(0,﹣60)、(0,3)、(0,5).
综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).
2015年广东省深圳市中考数学试卷
一、选择题:(共12个小题,每小题3分,共36分.)
1.﹣15的相反数是( )
A.15B.﹣15C.D.
2.用科学记数法表示316000000为( )
A.3.16×107B.3.16×108C.31.6×107D.31.6×106
3.下列说法错误的是( )
A.a•a=a2B.2a+a=3aC.(a3)2=a5D.a3÷a﹣1=a4
4.下列图形既是中心对称又是轴对称图形的是( )
A. B. C. D.
5.下列主视图正确的是( )
A. B. C. D.
6.在以下数据75,80,80,85,90中,众数、中位数分别是( )
A.75,80 B.80,80 C.80,85 D.80,90
7.解不等式2x≥x﹣1,并把解集在数轴上表示( )
A.B.C.D.
8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是( )
①a>0;②b>0;③c<0;④b2﹣4ac>0.
A.1B.2C.3D.4
9.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为( )
A.50°B.20°C.60°D.70°
第8题 第9题 第12题
10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
A.140B.120C.160D.100
11.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )
A.B.C.D.
12.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有( )
A.1B.2C.3D.4
二、填空题:(每题3分,满分12分)
13.因式分解:3a2﹣3b2= .
14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 .
15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 个太阳.
16.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= .
三、解答题:17.计算:|2﹣|+2sin60°+﹣.
18.解方程:.
19.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:
(1)三本以上的x值为 ,参加调查的总人数为 ,补全统计图;
(2)三本以上的圆心角为 .
(3)全市有6.7万学生,三本以上有 人.
20.小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.
21.下表为深圳市居民每月用水收费标准,(单位:元/m3).
(1)某用户用水10立方米,共交水费23元,求a的值;
(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?
22.如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.
(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;
(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.
23.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.
2015年广东省深圳市中考数学试卷答案
一、1. A. 2. B. 3. C.4. D.5. A.6. B.7. B.8. B. 9. D.10. B.11. D.12.C.
二、13. 3(a+b)(a﹣b)14. .15.21.16. 16.
三、17.解:原式=2﹣+2×+2﹣1=3.
18.解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),
整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,
分解因式得:(x﹣1)(7x﹣13)=0,
解得:x1=1,x2=,
经检验x1=1与x2=都为分式方程的解.
19.解:(1)40÷10%=400(人),
x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),
故答案为:20%,400;
如图所示;
(2)20%×360°=72°,
故答案为:72°;
(3)67000×20%=13400(人),
故答案为:13400.
20.解:如图,∵∠ADG=30°,∠AFG=60°,
∴∠DAF=30°,
∴AF=DF=10,
在Rt△FGA中,
AG=AF•sin∠AFG=10×=5,
∴AB=1.5+5.
答:旗杆AB的高度为(1.5+5)米.
21.解:(1)由题意可得:10a=23,
解得:a=2.3,
答:a的值为2.3;
(2)设用户水量为x立方米,
∵用水22立方米时,水费为:22×2.3=50.6<71,
∴x>22,
∴22×2.3+(x﹣22)×(2.3+1.1)=71,
解得:x=28,
答:该用户用水28立方米.
22.(1)解:由题意可得:BO=4cm,t==2(s);
(2)解:如图2,连接O与切点H,则OH⊥AC,
又∵∠A=45°,
∴AO=OH=3cm,
∴AD=AO﹣DO=(3﹣3)cm;
(3)证明:如图3,连接EF,
∵OD=OF,
∴∠ODF=∠OFD,
∵DE为直径,
∴∠ODF+∠DEF=90°,
∠DEC=∠DEF+∠CEF=90°,
∴∠CEF=∠ODF=∠OFD=∠CFG,
又∵∠FCG=∠ECF,
∴△CFG∽△CEF,
∴=,∴CF2=CG•CE.
23.解:
(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),
∴,解得,
∴抛物线的解析式y=﹣x2﹣2x+3,
(2)存在,
当P在∠DAB的平分线上时,如图1,作PM⊥AD,
设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,
∵PM=PE,∴(4﹣m)=m,m=﹣1,∴P点坐标为(﹣1,﹣1);
当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,
设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,
∵PN=PE,∴(4﹣n)=﹣n,n=﹣﹣1,∴P点坐标为(﹣1,﹣﹣1);
综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);
(3)∵抛物线的解析式y=﹣x2﹣2x+3,∴B(1,0),∴S△EBC=EB•OC=3,
∵2S△FBC=3S△EBC,∴S△FBC=,
过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,
∵S△FBC=S△BQH﹣S△BFH﹣S△CFQ=HB•HQ﹣BH•HF﹣QF•FM=BH(HQ﹣HF)﹣QF•FM=BH•QF﹣QF•FM=QF•(BH﹣FM)=FQ•OB=FQ=,
∴FQ=9,
∵BC的解析式为y=﹣3x+3,
设F(x0,﹣x02﹣2x0+3),
∴﹣3x0+3+x02+2x0﹣3=9,
解得:x0=或(舍去),
∴点F的坐标是(,),
∵S△ABC=6>,
∴点F不可能在A点下方,
综上可知F点的坐标为(,).
2016年广东省深圳市中考数学试卷
一、单项选择题:共12小题,每小题3分,共36分
1.下列四个数中,最小的正数是( )
A.﹣1 B.0 C.1 D.2
2.把下列图标折成一个正方体的盒子,折好后与“中”相对的字是( )
A.祝 B.你 C.顺 D.利
第2题 第6题 第11题 第12题
3.下列运算正确的是( )
A.8a﹣a=8 B.(﹣a)4=a4C.a3•a2=a6D.(a﹣b)2=a2﹣b2
4.下列图形中,是轴对称图形的是( )
A. B. C. D.
5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学记数法表示为( )
A.0.157×1010 B.1.57×108 C.1.57×109 D.15.7×108
6.如图,已知a∥b,直角三角板的直角顶角在直线b上,若∠1=60°,则下列结论错误的是( )
A.∠2=60° B.∠3=60° C.∠4=120° D.∠5=40°
7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是( )
A. B. C. D.
8.下列命题正确的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形 B.两边及其一角相等的两个三角形全等
C.16的平方根是4 D.一组数据2,0,1,6,6的中位数和众数分别是2和6
9.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是( )
A.﹣=2 B.﹣=2 C.﹣=2 D.﹣=2
10.给出一种运算:对于函数y=xn,规定y′=nxn﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是( )
A.x1=4,x2=﹣4 B.x1=2,x2=﹣2 C.x1=x2=0 D.x1=2,x2=﹣2
11.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )
A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4
12.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:
①AC=FG;②S△FAB:S四边形CEFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,
其中正确的结论的个数是( )
A.1 B.2 C.3 D.4
二、填空题:共4小题,每小题3分,共12分
13.分解因式:a2b+2ab2+b3= .
14.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是 .
15.如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为 .
16.如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=(x<0)的图象上,则k的值为 .
三、解答题:共7小题,其中17题5分,18题6分,19题7分,20题8分,共52分
17.计算:|﹣2|﹣2cs60°+()﹣1﹣(π﹣)0.
18.解不等式组:.
19.深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:
(1)根据上述统计图可得此次采访的人数为 人,m= ,n= ;
(2)根据以上信息补全条形统计图;
(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有 人.
20.某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)
21.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.
22.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.
23.如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y=x﹣分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.
2016年深圳市中考数学参考答案
一、1. C.2. C.3. B.4. B.5. C.6. D.7. A.8. D.9. A.10. B.11. A.12. D.
二、13. b(a+b)2.14. 8.15. 2.16. 4.
三、17.解:|﹣2|﹣2cs60°+()﹣1﹣(π﹣)0
=2﹣2×+6﹣1
=6.
18.解:,
解①得x<2,
解②得x≥﹣1,
则不等式组的解集是﹣1≤x<2.
19.解:(1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;
(2)如图所示;
(3)高度关注东进战略的深圳市民约有0.1×15000=1500(人).
20.解:如图,作AD⊥BC,BH⊥水平线,
由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,
∴∠ABC=30°,∠ACB=45°,
∵AB=32m,
∴AD=CD=AB•sin30°=16m,BD=AB•cs30°=16m,
∴BC=CD+BD=(16+16)m,
则BH=BC•sin30°=(8+8)m.
21.解:(1)设桂味的售价为每千克x元,糯米糍的售价为每千克y元;
根据题意得:,
解得:;
答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;
(2)设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,
根据题意得:12﹣t≥2t,
∴t≤4,
∵W=15t+20(12﹣t)=﹣5t+240,
k=﹣5<0,
∴W随t的增大而减小,
∴当t=4时,W的最小值=220(元),此时12﹣4=8;
答:购买桂味4千克,糯米糍8千克时,所需总费用最低.
22.(1)解:如图,连接OC,
∵沿CD翻折后,点A与圆心O重合,
∴OM=OA=×2=1,CD⊥OA,
∵OC=2,
∴CD=2CM=2=2=2;
(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,
∴PC===2,
∵OC=2,PO=2+2=4,
∴PC2+OC2=(2)2+22=16=PO2,
∴∠PCO=90°,
∴PC是⊙O的切线;
(3)解:GE•GF是定值,证明如下:
如图,连接GA、AF、GB,
∵点G为的中点,
∴=,
∴∠BAG=∠AFG,
又∵∠AGE=∠FGA,
∴△AGE∽△FGA,
∴=,
∴GE•GF=AG2,
∵AB为直径,AB=4,
∴∠BAG=∠ABG=45°,
∴AG=2,
∴GE•GF=8.
23.解:(1)把B(1,0)代入y=ax2+2x﹣3,
可得a+2﹣3=0,解得a=1,
∴抛物线解析式为y=x2+2x﹣3,
令y=0,可得x2+2x﹣3=0,解得x=1或x=﹣3,
∴A点坐标为(﹣3,0);
(2)若y=x平分∠APB,则∠APO=∠BPO,
如图1,若P点在x轴上方,PA与y轴交于点B′,
由于点P在直线y=x上,可知∠POB=∠POB′=45°,
在△BPO和△B′PO中
,
∴△BPO≌△B′PO(ASA),
∴BO=B′O=1,
设直线AP解析式为y=kx+b,把A、B′两点坐标代入可得
,解得,
∴直线AP解析式为y=x+1,
联立,解得,
∴P点坐标为(,);
若P点在x轴下方时,同理可得△BOP≌△B′OP,
∴∠BPO=∠B′PO,
又∠B′PO在∠APO的内部,
∴∠APO≠∠BPO,即此时没有满足条件的P点,
综上可知P点坐标为(,);
(3)如图2,作QH⊥CF,交CF于点H,
∵CF为y=x﹣,
∴可求得C(,0),F(0,﹣),
∴tan∠OFC==,
∵DQ∥y轴,
∴∠QDH=∠MFD=∠OFC,
∴tan∠HDQ=,
不妨设DQ=t,DH=t,HQ=t,
∵△QDE是以DQ为腰的等腰三角形,
∴若DQ=DE,则S△DEQ=DE•HQ=×t×t=t2,
若DQ=QE,则S△DEQ=DE•HQ=×2DH•HQ=×t×t=t2,
∵t2<t2,
∴当DQ=QE时△DEQ的面积比DQ=DE时大.
设Q点坐标为(x,x2+2x﹣3),则D(x, x﹣),
∵Q点在直线CF的下方,
∴DQ=t=x﹣﹣(x2+2x﹣3)=﹣x2﹣x+,
当x=﹣时,tmax=3,∴(S△DEQ)max=t2=,
即以QD为腰的等腰三角形的面积最大值为.
2017年广东省深圳市中考数学试卷
一、选择题:共12个小题,每小题3分,共36分.
1.﹣2的绝对值是( )
A.﹣2B.2C.﹣D.
2.图中立体图形的主视图是( )
A.B. C. D.
3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )
A.8.2×105B.82×105C.8.2×106D.82×107
4.观察下列图形,其中既是轴对称又是中心对称图形的是( )
A.B.C.D.
5.如图,下列选项中,哪个不可以得到l1∥l2( )
A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°
6.不等式组的解集为( )
A.x>﹣1B.x<3C.x<﹣1或x>3D.﹣1<x<3
7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=330
8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( )
A.40°B.50°C.60°D.70°
9.下列哪一个是假命题( )
A.五边形外角和为360° B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2) D.抛物线y=x2﹣4x+2017对称轴为直线x=2
10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )
A.平均数B.中位数C.众数D.方差
11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是( )m.
A.20B.30C.30D.40
12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是( )
A.1B.2C.3D.4
第8题 第11题 第12题 第16题
二、填空题(每题3分,满分12分)
13.因式分解:a3﹣4a= .
14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .
15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= .
16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= .
三、解答题17.计算:|﹣2|﹣2cs45°+(﹣1)﹣2+.
18.先化简,再求值:( +)÷,其中x=﹣1.
19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.
(1)学生共 人,x= ,y= ;
(2)补全条形统计图;
(3)若该校共有2000人,骑共享单车的有 人.
20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?
(2)能围成面积为200平方米的矩形吗?请说明理由.
21.如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.21(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;
(2)求证:AD=BC.
22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.
(1)求⊙O的半径r的长度;(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.
23.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.
2017年广东省深圳市中考数学试卷参考答案
一、1. B.2. A.3. C.4. D.5. C.6. D.7. D.8. B.9. C.10. B.11. B.12. C.
二、13.a(a+2)(a﹣2).14. .15. 216. 3.
三、17.解:|﹣2|﹣2cs45°+(﹣1)﹣2+,
=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.
18.解:当x=﹣1时,
原式=×=3x+2=﹣1
19.解:(1)由题意总人数==120人,
x==0.25,m=120×0.4=48,
y=1﹣0.25﹣0.4﹣0.15=0.2,
n=120×0.2=24,
(2)条形图如图所示,
(3)2000×0.25=500人,
故答案为500.
20.解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有
x(28﹣x)=180,
解得x1=10(舍去),x2=18,
28﹣x=28﹣18=10.
故长为18厘米,宽为10厘米;
(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有
x(28﹣x)=200,即x2﹣28x+200=0,
则△=282﹣4×200=784﹣800<0,原方程无解,
故不能围成一个面积为200平方厘米的矩形.
21.解:(1)将点A(2,4)代入y=中,得,m=2×4=8,
∴反比例函数的解析式为y=,
将点B(a,1)代入y=中,得,a=8,
∴B(8,1),
将点A(2,4),B(8,1)代入y=kx+b中,得,,
∴,∴一次函数解析式为y=﹣x+5;
(2)∵直线AB的解析式为y=﹣x+5,
∴C(10,0),D(0,5),
如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,
∴E(0,4),F(8,0),
∴AE=2,DE=1,BF=1,CF=2,
在Rt△ADE中,根据勾股定理得,AD==,
在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.
22.解:(1)如图1中,连接OC.
∵AB⊥CD,∴∠CHO=90°,
在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,
∴r2=42+(r﹣2)2,∴r=5.
(2)如图1中,连接OD.
∵AB⊥CD,AB是直径,
∴==,
∴∠AOC=∠COD,
∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.
(3)如图2中,连接AM.
∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,
∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,
∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,
∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.
23.解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),
∴,解得,
∴抛物线解析式为y=﹣x2+x+2;
(2)由题意可知C(0,2),A(﹣1,0),B(4,0),
∴AB=5,OC=2,
∴S△ABC=AB•OC=×5×2=5,
∵S△ABC=S△ABD,
∴S△ABD=×5=,
设D(x,y),
∴AB•|y|=×5|y|=,解得|y|=3,
当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);
当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);
综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);
(3)∵AO=1,OC=2,OB=4,AB=5,
∴AC==,BC==2,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,即BC⊥AC,
如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,
由题意可知∠FBC=45°,
∴∠CFB=45°,
∴CF=BC=2,
∴=,即=,解得OM=2, =,即=,解得FM=6,
∴F(2,6),且B(4,0),
设直线BE解析式为y=kx+m,则可得,解得,
∴直线BE解析式为y=﹣3x+12,
联立直线BE和抛物线解析式可得,解得或,
∴E(5,﹣3),∴BE==.
2018年广东省深圳市中考数学试卷
一、选择题:(共12个小题,每小题3分,共36分.)
1.6的相反数是( )
A.﹣6B.C.D.6
2.260000000用科学记数法表示为( )
A.0.26×109B.2.6×108C.2.6×109D.26×107
3.图中立体图形的主视图是( )
A.B.C.D.
4.观察下列图形,是中心对称图形的是( )
A.B.C.D.
5.下列数据:75,80,85,85,85,则这组数据的众数和极差是( )
A.85,10B.85,5C.80,85D.80,10
6.下列运算正确的是( )
A.a2•a3=a6B.3a﹣a=2aC.a8÷a4=a2D.
7.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )
A.(2,2)B.(2,3)C.(2,4)D.(2,5)
8.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )
A.∠1=∠2B.∠3=∠4C.∠2+∠4=180°D.∠1+∠4=180°
9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )
A. B. C. D.
10.如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是( )
A.3B.C.6D.
11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是( )
A.abc>0 B.2a+b<0 C.3a+c<0 D.ax2+bx+c﹣3=0有两个不相等的实数根
12.如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是( )
①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16
A.①③B.②③C.②④D.③④
二、填空题(每题3分,满分12分)
13.分解因式:a2﹣9= .
14.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率: .
15.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是 .
16.在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .
三、解答题(共7小题,共72分.)
17.(5分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.
18.(6分)先化简,再求值:,其中x=2.
19.(7分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
请根据上图完成下面题目:
(1)总人数为 人,a= ,b= .(2)请你补全条形统计图.
(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
20.(8分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.
(1)求证:四边形ACDB为△FEC的亲密菱形; (2)求四边形ACDB的面积.
21.(8分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
22.(9分)如图在⊙O中,BC=2,AB=AC,点D为AE上的动点,且csB=.
(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.
23.(9分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.
2018年广东省深圳市中考数学参考答案
一、1. A.2. B.3. B.4. D.5. A.6. B.7. D.8. B.9. A.10. D.11. C.12. B.
二、13.(a+3)(a﹣3).14. .15. 8.16. .
三、17.解:原式=2﹣2×++1=3.
18.解:原式=
把x=2代入得:原式=
19.解:(1)总人数为40÷0.4=100人,
a=25÷100=0.25、b=100×0.15=15,
故答案为:100、0.25、15;
(2)补全条形图如下:
(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.
20.(1)证明:∵由已知得:AC=CD,AB=DB,
由已知尺规作图痕迹得:BC是∠FCE的角平分线,
∴∠ACB=∠DCB,
又∵AB∥CD,∴∠ABC=∠DCB,
∴∠ACB=∠ABC,∴AC=AB,
又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,
∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,
∴四边形ACDB为△FEC的亲密菱形;
(2)解:设菱形ACDB的边长为x,
∵四边形ACDB是菱形,∴AB∥CE,
∴∠FAB=∠FCE,∠FBA=∠E,∴△FAB∽△FCE
∴,
即,解得:x=4,
过A点作AH⊥CD于H点,
∵在Rt△ACH中,∠ACH=45°,
∴,∴四边形ACDB的面积为:.
21.解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,
根据题意得:3•=,
解得:x=8,经检验,x=8是分式方程的解.
答:第一批饮料进货单价为8元.
(2)设销售单价为m元,
根据题意得:200(m﹣8)+600(m﹣10)≥1200,
解得:m≥11.
答:销售单价至少为11元.
22.解:(1)作AM⊥BC,
∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,
∵csB==,
在Rt△AMB中,BM=1,∴AB==;
(2)连接DC,
∵AB=AC,∴∠ACB=∠ABC,
∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,
∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,
∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;
(3)在BD上取一点N,使得BN=CD,
在△ABN和△ACD中
,
∴△ABN≌△ACD(SAS),∴AN=AD,
∵AN=AD,AH⊥BD,∴NH=HD,
∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.
23.解:(1)把点代入,
解得:a=1,∴抛物线的解析式为:;
(2)由知A(,﹣2),
设直线AB解析式为:y=kx+b,代入点A,B的坐标,
得:,
解得:,∴直线AB的解析式为:y=﹣2x﹣1,
易求E(0,1),,,
若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,
∴,
设点P(t,﹣2t﹣1),则:
解得,,
由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,
∵△POE的面积=,∴△POE的面积为或.
(3)若点Q在AB上运动,如图1,
设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,
由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,
由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
∴==,即===2,∴QR=2、ES=,
由NE+ES=NS=QR可得﹣a+=2,
解得:a=﹣,∴Q(﹣,);
若点Q在BC上运动,且Q在y轴左侧,如图2,
设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,
在Rt△SEN′中,(﹣a)2+12=a2,
解得:a=,∴Q(﹣,2);
若点Q在BC上运动,且点Q在y轴右侧,如图3,
设NE=a,则N′E=a,
易知RN′=2、SN′=1、QN′=QN=3,
∴QR=、SE=﹣a,
在Rt△SEN′中,(﹣a)2+12=a2,
解得:a=,∴Q(,2).
综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).
题 号
1
2
3
4
5
6
7
8
9
10
11
12
答 案
B
C
B
D
A
A
B
C
D
D
C
A
…
…
…
…
题号
1
2
3
4
5
6
7
8
9
10
答案
B
C
A
D
A
B
A
D
C
D
项目
频数
频率
A
80
b
B
c
0.3
C
20
0.1
合计
a
1
用水量
单价
x≤22
a
剩余部分
a+1.1
关注情况
频数
频率
A.高度关注
M
0.1
B.一般关注
100
0.5
C.不关注
30
N
D.不知道
50
0.25
类型
频数
频率
A
30
x
B
18
0.15
C
m
0.40
D
n
y
频数
频率
体育
40
0.4
科技
25
a
艺术
b
0.15
其它
20
0.2
相关试卷
这是一份2021年广东省深圳市中考数学试卷,共27页。
这是一份2021年广东省深圳市中考数学试卷,共41页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2018年广东省深圳市中考数学试卷,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。