2019年内蒙古通辽市中考数学试卷-(3年中考)
展开2019年内蒙古通辽市中考数学试卷-(3年中考)
一、选择题(本题包括10小题,每小题3分,共30分)
1.﹣的相反数是( )
A.2019 B.﹣ C.﹣2019 D.
2.的平方根是( )
A.±4 B.4 C.±2 D.+2
3.2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中,2019年春运
全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为( )
A.73×106 B.7.3×103 C.7.3×107 D.0.73×108
4.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )
A. B. C. D.
5.如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为( )
A.x>﹣1 B.x<﹣1 C.x≥3 D.x≥﹣1
6.一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为( )
A.48 B.24 C.24或40 D.48或80
7.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于( )
A. B.π C.π D.2π
8.现有以下命题:
①斜边中线和一个锐角分别对应相等的两个直角三角形全等;
②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;
③通常温度降到0℃以下,纯净的水会结冰是随机事件;
④一个角的两边与另一个角的两边分别平行,那么这两个角相等;
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;
其中真命题的个数有( )
A.1个 B.2个 C.3个 D.4个
9.关于x、y的二元一次方程组的解满足x<y,则直线y=kx﹣k﹣1与双曲线y=在同一平面直角坐标系中大致图象是( )
A. B. C. D.
10.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.
其中错误结论的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(本题包括7小题,每小题3分,共21分)
11.如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是 ℃.
12.某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:
日期
6月6日
6月7日
6月8日
6月9日
次品数量(个)
1
0
2
a
若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于 .
13.如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为 .
14.已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为 .
15.腰长为5,高为4的等腰三角形的底边长为 .
16.取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为 .
17.如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是 .
三、解答题(本题包括9小题,共69分)
18.(5分)计算:﹣14﹣|﹣1|+(﹣1.414)0+2sin60°﹣(﹣)﹣1
19.(6分)先化简,再求值.
÷+,请从不等式组的整数解中选择一个你喜欢的求值.
20.(5分)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:≈1.7,≈1.4)
21.(6分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.
(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是 .
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.
22.(9分)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.
七年级学生最喜欢的运动项目人数统计表
项目
排球
篮球
踢毽
跳绳
其他
人数(人)
7
8
14
6
请根据以上统计表(图)解答下列问题:
(1)本次调查共抽取了多少人?
(2)补全统计表和统计图.
(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.
23.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC至F点,使CF=CD,连接AF.
(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.
24.(9分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.
(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.
(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.
25.(9分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
①如图2,求证:BE⊥DQ;
②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
26.(12分)已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.
(1)求抛物线的解析式和直线AB的解析式.
(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.
2019年内蒙古通辽市中考数学试卷答案
1. D.2. C.3. C.4. B.5. D. 6. B.7. C.8. B.9. B.10. A.
11. 27.12. .13. .14. 3.75cm2.15. 6或2或4.16. .
17. ﹣1
18.解:原式=﹣1﹣(﹣1)+1+2×+2=﹣1﹣+1+1++2=3.
19.解:÷+====,
由不等式组,得﹣3<x≤2,
∴当x=2时,原式=.
20.解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,
由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,
在Rt△BFH中,tan∠BFH===,
∴BH=30×=10≈10×1.7=17,
∴FC=HD=BD﹣BH≈30﹣17=13,
∵≈4.3,所以在四层的上面,即第五层,
答:此刻楼BD的影子会遮挡到楼AC的第5层.
21.解:(1)共有4张牌,正面是中心对称图形的情况有3种,
从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;
故答案为:;
(2)游戏不公平,理由如下:
列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即(A,C)(C,A)
∴P(两张牌面图形既是轴对称图形又是中心对称图形)==≠,
∴游戏不公平.
修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.
22.解:(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%,
又知九年级最喜欢排球的人数为10人,
∴九年级最喜欢运动的人数有10÷20%=50(人),
∴本次调查抽取的学生数为:50×3=150(人).
(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人,
那么八年级最喜欢跳绳的人数有15﹣5=10人,
最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13人,
九年级最喜欢排球的人数占全年级的百分比==20%,
补全统计表和统计图如图所示;
七年级学生最喜欢的运动项目人数统计表
项目
排球
篮球
踢毽
跳绳
其他
人数(人)
7
8
14
15
6
(3)不够用,理由:1800×÷4=126,
∵126>124,
∴不够用.
故答案为:15.
23.解:(1)直线AF是⊙O的切线,理由是:连接AC,
∵AB为⊙O直径,
∴∠ACB=90°,
∴AC⊥BC,
∵CF=CD,
∴∠CAF=∠EAC,
∵AC=CE,
∴∠E=∠EAC,
∵∠B=∠E,
∴∠B=∠FAC,
∵∠B+∠BAC=90°,
∴∠FAC+∠BAC=90°,
∴OA⊥AF,
又∵点A在⊙O上,
∴直线AF是⊙O的切线;
(2)过点C作CM⊥AE,
∵tan∠CAE=,
∴=,
∵AC=10,
∴设CM=3x,则AM=4x,
在Rt△ACM中,根据勾股定理,CM2+AM2=AC2,
∴(3x)2+(4x)2=100,
解得x=2,
∴AM=8,
∵AC=CE,
∴AE=2AE=2×8=16.
24.解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);
(2)设每天扣除捐赠后可获得利润为w元.
w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)
对称轴为x=35+a,且0<a≤6,则30a≤38,
则当x=35+a时,w取得最大值,
∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960
∴a1=2,a2=58(不合题意舍去),
∴a=2.
25.(1)证明:∵∠BCD=90°,∠PCQ=90°,
∴∠BCP=∠DCQ,
在△BCP和△DCQ中,
,
∴△BCP≌△DCQ(SAS);
(2)①如图b,∵△BCP≌△DCQ,
∴∠CBF=∠EDF,又∠BFC=∠DFE,
∴∠DEF=∠BCF=90°,
∴BE⊥DQ;
②∵△BCP为等边三角形,
∴∠BCP=60°,
∴∠PCD=30°,又CP=CD,
∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,
∴∠EPD=180°﹣∠CPD﹣∠CPB=180°﹣75°﹣60=45°,
同理:∠EDP=45°,
∴△DEP为等腰直角三角形.
26.解:(1)二次函数表达式为:y=a(x﹣1)2+9,
将点A的坐标代入上式并解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+2x+8…①,
则点B(3,5),
将点A、B的坐标代入一次函数表达式并解得:
直线AB的表达式为:y=2x﹣1;
(2)存在,理由:
二次函数对称轴为:x=1,则点C(1,1),
过点D作y轴的平行线交AB于点H,
设点D(x,﹣x2+2x+8),点H(x,2x﹣1),
∵S△DAC=2S△DCM,
则S△DAC=DH(xC﹣xA)=(﹣x2+2x+8﹣2x+1)(1+3)=(9﹣1)(1﹣x)×2,
解得:x=﹣1或5(舍去5),
故点D(﹣1,5);
(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,
①当AM是平行四边形的一条边时,
点M向左平移4个单位向下平移16个单位得到A,
同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,
即:m﹣4=s,﹣6=t,而t=﹣s2+2s+8,
解得:s=6或﹣4,
故点P(6,﹣16)或(﹣4,﹣16);
②当AM是平行四边形的对角线时,
由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,
解得:s=1,
故点P(1,2)或(1﹣,2);
综上,点P(6,﹣16)或(﹣4,﹣16)或(1,2)或(1﹣,2).
内蒙古通辽市2018年中考数学真题试题
一、选择题(本题包括10个小题每小题3分共30分)
1.的倒数是( )
A.2018 B.﹣2018 C.﹣ D.
2.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是( )
A. B. C. D.
3.下列说法错误的是( )
A.通过平移或旋转得到的图形与原图形全等 B.“对顶角相等”的逆命题是真命题
C.圆内接正六边形的边长等于半径 D.“经过有交通信号灯的路口,遇到红灯”是随机事件
4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是( )
A. B. C. D.
5.如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是( )
A.18π B.24π C.27π D.42π
6.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为( )
A.﹣=100 B.﹣=100 C.﹣=100 D.﹣=100
7.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A.30° B.60° C.30°或150° D.60°或120°
8.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )
A.亏损20元 B.盈利30元 C.亏损50元 D.不盈不亏
9.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是( )
A. B. C. D.
10.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(本题包括7个小题,每小题3分,共21分)
11.2018年5月13日,我国第一艘国产航母出海试航,这标志着我国从此进入“双航母”时代,据估测该航母的满载排水量与辽宁舰相当,约67500吨,将67500用科学记数法表示为 .
12.如图,∠AOB的一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是 .
13.一组数据2,x,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是 .
14.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为 .
15.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为 .
16.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为 .
17.如图,在平面直角坐标系中,反比例函数y=(k>0)的图象与半径为5的⊙O交于M、N两点,△MON的面积为3.5,若动点P在x轴上,则PM+PN的最小值是 .
三、解答题(本题包括9个小题共69分)
18.(5分)计算:﹣|4﹣|﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2.
19.(6分)先化简(1﹣)÷,然后从不等式2x﹣6<0的非负整数解中选取一个合适的解代入求值.
20.(6分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)
21.(6分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
请根据图表中所提供的信息,完成下列问题:
分组
频数
1.2≤x<1.6
a
1.6≤x<2.0
12
2.0≤x<2.4
b
2.4≤x<2.8
10
(1)表中a= ,b= ,样本成绩的中位数落在 范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?
22.(7分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
(1)求证:△AEF≌△DEB;(2)若AB=AC,试判 断四边形ADCF的形状,并证明你的结论.
23.(8分)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;
(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.
24.(9分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
25.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.
26.(12分)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.
(1)请直接写出抛物线的解析式及顶点D的坐标;
(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.
②过点F作FH⊥BC于点H,求△PFH周长的最大值.
内蒙古通辽市2018年中考数学真题试题答案
1. A. 2. C. 3. B. 4. B. 5. C. 6. B. 7. D.8. A. 9. D. 10. B.
11. 6.75×104. 12. 75°30′(或75.5°). 13. . 14. .15. x(x﹣1)=21. 16. 9. 17. 5.
18.解:原式=﹣(4﹣2)﹣1+(1﹣)×4=﹣4+2﹣1+4﹣2=﹣1.
19.解:原式=•=•=,
由不等式2x﹣6<0,得到x<3,
∴不等式2x﹣6<0的非负整数解为x=0,1,2,
则x=0时,原式=2.
20.解:如图,作BD⊥AC于D,
由题意可得:BD=1400﹣1000=400(米),
∠BAC=30°,∠BCA=45°,
在Rt△ABD中,
∵,即,
∴AD=400(米),
在Rt△BCD中,
∵,即,
∴CD=400(米),
∴AC=AD+CD=400+400≈1092.8≈1093(米),
答:隧道最短为1093米.
21.解:(1)由统计图可得,
a=8,b=50﹣8﹣12﹣10=20,
样本成绩的中位数落在:2.0≤x<2.4范围内,
故答案为:8,20,2.0≤x<2.4;
(2)由(1)知,b=20,
补全的频数分布直方图如右图所示;
(3)1000×=200(人),
答:该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.
22.证明:(1)∵E是AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,∠EAF=∠EDB,
∴△AEF≌△DEB(AAS);
(2)连接DF,
∵AF∥CD,AF=CD,
∴四边形ADCF是平行四边形,
∵△AEF≌△DEB,
∴BE=FE,
∵AE=DE,
∴四边形ABDF是平行四边形,
∴DF=AB,
∵AB=AC,
∴DF=AC,
∴四边形ADCF是矩形.
23.解:(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;
(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,
补全图形如下:
(3)画树状图为:
共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,
所以书法与乐器组合在一起的概率为=.
24.解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
25.解:(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP,
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC==13cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BC=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
26.解:(1)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5
解得
∴y=x2﹣4x﹣5
∴顶点坐标为D(2,﹣9)
(2)①存在
设直线BC的函数解析式为y=kx+b(k≠0)
把B(5,0),C(0,﹣5)代入得
∴BC解析式为y=x﹣5
当x=m时,y=m﹣5
∴P(m,m﹣5)
当x=2时,y=2﹣5=﹣3
∴E(2.﹣3)
∵PF∥DE∥y轴
∴点F的横坐标为m
当x=m时,y=m2﹣4m﹣5
∴F(m,m2﹣4m﹣5)
∴PF=(m﹣5)﹣(m2﹣4m﹣5)=﹣m2+5m
∵E(2,﹣3),D(2,﹣9)
∴DE=﹣3﹣(﹣9)=6
如图,连接DF
∵PF∥DE
∴当PF=DE时,四边形PEDF为平行四边形
即﹣m2+5m=6
解得m1=3,m2=2(舍去)
当m=3时,y=3﹣5=2
此时P(3,﹣2)
∴存在点P(3,﹣2)使四边形PEDF为平行四边形.
②由题意
在Rt△BOC中,OB=OC=5
∴BC=5
∴C△BOC=10+5
∵PF∥DE∥y轴
∴∠FPE=∠DEC=∠OCB
∵FH⊥BC
∴∠FHP=∠BOC=90°
∴△PFH∽△BCO
∴
即C△PFH=
∵0<m<5
∴当m=﹣时,△PFH周长的最大值为
2017年内蒙古通辽市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.﹣5的相反数是( )
A.5 B.﹣5 C. D.
2.下列四个几何体的俯视图中与众不同的是( )
A. B. C. D.
3.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是( )
A.折线图 B.条形图 C.直方图 D.扇形图
4.下列图形中,是轴对称图形,不是中心对称图形的是( )
A. B. C. D.
5.若数据10,9,a,12,9的平均数是10,则这组数据的方差是( )
A.1 B.1.2 C.0.9 D.1.4[来源:学科网]
6.近似数5.0×102精确到( )
A.十分位 B.个位 C.十位 D.百位
7.志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )
A.540元 B.1080元 C.1620元 D.1800元
8.若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是( )
A. B. C. D.
9.下列命题中,假命题有( )
①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;
③过一点有且只有一条直线与已知直线平行;④垂直于同一直线的两条直线平行;
⑤若⊙O的弦AB,CD交于点P,则PA•PB=PC•PD.
A.4个 B.3个 C.2个 D.1个
10.如图,点P在直线AB上方,且∠APB=90°,PC⊥AB于C,若线段AB=6,AC=x,S△PAB=y,则y与x的函数关系图象大致是( )
A. B. C. D.
二、填空题(本大题共7小题,每小题3分,共21分)
11.不等式组的整数解是 .
12.如图,CD平分∠ECB,且CD∥AB,若∠A=36°,则∠B= .
13.毛泽东在《沁园春•雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全相同的知识卡片上,小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是 .
14.若关于x的二次三项式x2+ax+是完全平方式,则a的值是 .
15.在▱ABCD中,AE平分∠BAD交边BC于E,DF平分∠ADC交边BC于F,若AD=11,EF=5,则AB= .
16.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位后所得直线l′的函数关系式为 .[来17.如图,直线y=﹣x﹣与x,y轴分别交于点A,B,与反比例函数y=的图象在第二象限交于点C,过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的坐标为 .
三、解答题(本大题共9小题,共69分)
18.计算:(π﹣2017)0+6sin60°﹣|5﹣|﹣()﹣2.
19.先化简,再求值:(1﹣)÷,其中x从0,1,2,3四个数中适当选取.
20.一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.
21.小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或列表法说明理由.
22.如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.求:
(1)单摆的长度(≈1.7);(2)从点A摆动到点B经过的路径长(π≈3.1).
23.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.
(1)求出下列成绩统计分析表中a,b的值:
组别
平均分
中位数
方差
合格率
优秀率
甲组
6.8
a
3.76
90%
30%
乙组
b
7.5
1.96
80%
20%
(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.
24.如图,AB为⊙O的直径,D为的中点,连接OD交弦AC于点F,过点D作DE∥AC,交BA的延长线于点E.(1)求证:DE是⊙O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.
25.邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.
(1)猜想与计算:
邻边长分别为3和5的平行四边形是 阶准菱形;已知▱ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出▱ABCD是 阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.
26.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.
(1)求抛物线y=ax2+bx+2的函数表达式;
(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;
(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.
2017年内蒙古通辽市中考数学试卷答案
1. A. 2. B. 3. D.4. D. 5. B. 6. C. 7.C 8. A. 9. C.10. D.
11. 0,1,2. 12. 36°. 13. . 14.±1.15. 8或3.16. y=x﹣.17.(﹣3,4﹣2).
18.解:原式=1+6×﹣3+5﹣4=2.
19.解:(1﹣)÷=×=
∵x﹣1≠0,x﹣2≠0,x﹣3≠0,
∴x≠1,2,3,
当x=0时,
原式==﹣
20.解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:
=+,解得:x=120,
经检验得:x=120是原方程的根,
答:汽车出发后第1小时内的行驶速度是120千米/小时.
21.解:这个游戏对双方是公平的.
如图,
∴一共有6种情况,和大于4的有3种,
∴P(和大于4)==,
∴这个游戏对双方是公平的.
22.解:(1)如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,
∵∠EOA=30°、∠FOB=60°,且OC⊥EF,
∴∠AOP=60°、∠BOQ=30°,
设OA=OB=x,
则在Rt△AOP中,OP=OAcos∠AOP=x,
在Rt△BOQ中,OQ=OBcos∠BOQ=x,
由PQ=OQ﹣OP可得x﹣x=7,
解得:x=7+7≈18.9(cm),
答:单摆的长度约为18.9cm;
(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB=7+7,
∴∠AOB=90°,
则从点A摆动到点B经过的路径长为≈29.295,
答:从点A摆动到点B经过的路径长为29.295cm.
23.解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,
∴其中位数a=6,
乙组学生成绩的平均分b==7.2;
(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于全班中上游,
∴小英属于甲组学生;
(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;
②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.
24.(1)证明:∵D为的中点,
∴OD⊥AC,
∵AC∥DE,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)解:连接DC,
∵D为的中点,
∴OD⊥AC,AF=CF,
∵AC∥DE,且OA=AE,
∴F为OD的中点,即OF=FD,
在△AFO和△CFD中,
∴△AFO≌△CFD(SAS),
∴S△AFO=S△CFD,
∴S四边形ACDE=S△ODE
在Rt△ODE中,OD=OA=AE=4,
∴OE=8,
∴DE==4,
∴S四边形ACDE=S△ODE=×OD×DE=×4×4=8.
25.解:(1)如图1,
利用邻边长分别为3和5的平行四边形进行3次操作,所剩四边形是边长为1的菱形,
故邻边长分别为3和5的平行四边形是3阶准菱形:
如图2,
∵b=5r,
∴a=8b+r=40r+r=8×5r+r,
利用邻边长分别为41r和5r的平行四边形进行8+4=12次操作,所剩四边形是边长为1的菱形,
故邻边长分别为41r和5r的平行四边形是12阶准菱形:
故答案为:3,12
(2)由折叠知:∠ABE=∠FBE,AB=BF,
∵四边形ABCD是平行四边形,
∴AE∥BF,
∴∠AEB=∠FBE,
∴∠AEB=∠ABE,
∴AE=AB,
∴AE=BF,
∴四边形ABFE是平行四边形,
∴四边形ABFE是菱形
26.解:(1)把点A(﹣2,0),B(2,2)代入抛物线y=ax2+bx+2中,
,解得:,
∴抛物线函数表达式为:y=﹣x2+x+2;
(2)y=﹣x2+x+2=﹣(x﹣1)2+;
∴对称轴是:直线x=1,
如图1,过B作BE⊥x轴于E,
∵C(0,2),B(2,2),对称轴是:x=1,
∴C与B关于x=1对称,
∴CD=BD,
连接AB交对称轴于点D,此时△ACD的周长最小,
∵BE=2,AE=2+2=4,OC=2,OA=2,
∴AB==2,
AC==2,
∴△ACD的周长=AC+CD+AD=AC+BD+AD=AC+AB=2+2;
答:△ACD的周长的最小值是2+2,
(3)存在,分两种情况:
①当∠ACP=90°时,△ACP是直角三角形,如图2,
过P作PD⊥y轴于D,
设P(1,y),
则△CGP∽△AOC,
∴,
∴,
∴CG=1,
∴OG=2﹣1=1,
∴P(1,1);
②当∠CAP=90°时,△ACP是直角三角形,如图3,
设P(1,y),
则△PEA∽△AOC,∴,∴=,
∴PE=3,
∴P(1,﹣3);
综上所述,△ACP是直角三角形时,点P的坐标为(1,1)或(1,﹣3).
2022年内蒙古通辽市中考数学试卷: 这是一份2022年内蒙古通辽市中考数学试卷,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2018年内蒙古通辽市中考数学试卷及答案: 这是一份2018年内蒙古通辽市中考数学试卷及答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年内蒙古通辽市中考数学试卷: 这是一份2023年内蒙古通辽市中考数学试卷,共35页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。