|试卷下载
终身会员
搜索
    上传资料 赚现金
    2019年青海省中考数学试卷-(3年中考)
    立即下载
    加入资料篮
    2019年青海省中考数学试卷-(3年中考)01
    2019年青海省中考数学试卷-(3年中考)02
    2019年青海省中考数学试卷-(3年中考)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019年青海省中考数学试卷-(3年中考)

    展开
    这是一份2019年青海省中考数学试卷-(3年中考),共21页。试卷主要包含了填空题,单项选择题等内容,欢迎下载使用。

    2019年青海省中考数学试卷-(3年中考)
    一、填空题(本大题共12小题15空,每空2分,共30分)
    1.﹣5的绝对值是   ;278的立方根是   .
    2.分解因式:ma2﹣6ma+9m=   ;分式方程3x-3=2x的解为   .
    3.世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为   米.
    4.某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为   .
    5.如图,P是反比例函数y=kx 图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为   .
     
    6.如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是   .
    7.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为   米.(结果保留根号)
    8.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是   .
    9.如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B
    向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆
    的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压   cm.
             
    10.根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y值等于   .

    11.如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为   .
    12.如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有   个菱形……,第n个图中共有   个菱形.

    二、单项选择题(本大题共8小题,每小题3分,共24分)
    13.下面几何体中,俯视图为三角形的是(  )
    A.    B.    C.     D.
    14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30°角的三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )
    A.15° B.22.5° C.30° D.45°
          
    15.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为(  )
    A.10g,40g B.15g,35g C.20g,30g D.30g,20g
    16.为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为(  )
    每周做家务的时间(h)
    0
    1
    1.5
    2
    2.5
    3
    3.5
    4
    人数(人)
    2
    2
    6
    8
    12
    13
    4
    3
    A.2.5和2.5 B.2.25和3 C.2.5和3 D.10和13
    17.如图,小莉从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,……,照这样走下去,她第一次回到出发点A时,一共走的路程是(  )
    A.150米 B.160米 C.180米 D.200米
    18.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=1.2,则DF的长为(  )
    A.3.6 B.4.8 C.5 D.5,2
    19.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则BC的长为(  )
    A.4π3 B.8π3 C.23π D.2π
       
    20.大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是(  )
    A.   B.    C.     D.
    三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)
    21.(5分)计算:(49-1)0+(-13)﹣1+|2-1|﹣2cos45°



    22.(5分)化简求值:(3m+2+m﹣2)÷m2-2m+1m+2;其中m=2+1





    23.(8分)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF
    ∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.






    四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)
    24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162
    吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉
    制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,
    一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?









    25.(8分)如图,在⊙O中,点C、D分别是半径OB、弦AB的中点,过点A作AE⊥CD于点E.
    (1)求证:AE是⊙O的切线;(2)若AE=2,sin∠ADE=23,求⊙O的半径.
























    26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):
    血型统计表
    血型
    A
    B
    AB
    O
    人数
       
    10
    5
       
    (1)本次随机抽取献血者人数为   人,图中m=   ;
    (2)补全表中的数据;
    (3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?
    (4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.















    五、(本大题共2小题,第27题10分,第28题12分,共22分)
    27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=14[a2b2-(a2+b2-c22)2]①
    这是中国古代数学的瑰宝之一.
    而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p=a+b+c2(周长的一半),则S=p(p-a)(p-b)(p-c)②
    (1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;
    (2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);
    (3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,△ABC的内切圆半径为r,三角形三边长为a,b,c,仍记p=a+b+c2,S为三角形面积,则S=pr.











    28.(12分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B(5,0)、C(0,4)三点.
    (1)求抛物线的解析式和对称轴;
    (2)P是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);
    (3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)

    2019年青海省中考数学试卷答案
    1. 5,32.2. m(a﹣3)2;x=﹣6 3. 6×10﹣9 4. 10%. 5. 12. 6.(﹣3,﹣2).7. 43-4.
    8. 14.9. 50.10.﹣2.11. 112. 13,(3n﹣2).
    13. D.14. A.15. C.16. C.17. C.18. B.19. B.20. D.
    21.解:原式=1﹣3+2-1﹣2×22=1﹣3+2-1-2=﹣3.
    22.解:原式=(3m+2+m2-4m+2)÷(m-1)2m+2=(m+1)(m-1)m+2•m+2(m-1)2 =m+1m-1,
    当m=2+1时,
    原式=2+1+12+1-1=2+1.
    23.证明:(1)∵AF∥BC,
    ∴∠AFE=∠DBE
    ∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,
    ∴AE=DE,BD=CD
    在△AFE和△DBE中,
    ∠AFE=∠DBE∠AEF=∠BEDAE=DE,
    ∴△AFE≌△DBE(AAS)
    (2)由(1)知,AF=BD,且BD=CD,
    ∴AF=CD,且AF∥BC,
    ∴四边形ADCF是平行四边形
    ∵∠BAC=90°,D是BC的中点,
    ∴AD=12BC=CD,
    ∴四边形ADCF是菱形.
    24.解:(1)设安排x辆大型车,则安排(30﹣x)辆中型车,
    依题意,得:8x+3(30-x)≤1905x+6(30-x)≤162,解得:18≤x≤20.
    ∵x为整数,
    ∴x=18,19,20.
    ∴符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车.
    (2)方案1所需费用为:900×18+600×12=23400(元),
    方案2所需费用为:900×19+600×11=23700(元),
    方案3所需费用为:900×20+600×10=24000(元).
    ∵23400<23700<24000,
    ∴方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.
    25.(1)证明:连接OA,如图,
    ∵点C、D分别是半径OB、弦AB的中点,
    ∵DC∥OA,即EC∥OA,
    ∵AE⊥CD,
    ∴AE⊥AO,
    ∴AE是⊙O的切线;
    (2)解:连接OD,如图,
    ∵AD=CD,
    ∴OD⊥AB,
    ∴∠ODA=90°,
    在Rt△AED中,sin∠ADE=AEAD=23,
    ∴AD=3,
    ∵CD∥OA,
    ∴∠OAD=∠ADE.
    在Rt△OAD中,sin∠OAD=23,
    设OD=2x,则OA=3x,
    ∴AD=(3x)2-(2x)2=5x,
    即5x=3,解得x=355,
    ∴OA=3x=955,
    即⊙O的半径长为955.

    26.解:(1)这次随机抽取的献血者人数为5÷10%=50(人),
    所以m=1050×100=20;
    故答案为50,20;
    (2)O型献血的人数为46%×50=23(人),
    A型献血的人数为50﹣10﹣5﹣23=12(人),
    血型
    A
    B
    AB
    O
    人数
    12
    10
    5
    23
    故答案为12,23;
    (3)从献血者人群中任抽取一人,其血型是A型的概率=1250=625,
    1300×625=312,
    估计这1300人中大约有312人是A型血;
    (4)画树状图如图所示,

    所以P(两个O型)=212=16.
    27.解:(1)由①得:S=14[52×72-(52+72-822)2]=103,
    由②得:p=5+7+82=10,
    S=10×(10-5)×(10-7)×(10-8)=103;
    (2)公式①和②等价;推导过程如下:
    ∵p=a+b+c2,
    ∴2p=a+b+c,
    ①中根号内的式子可化为:
    14(ab+a2+b2-c22)(ab-a2+b2-c22)
    =116(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)
    =116[(a+b)2﹣c2][c2﹣(a﹣b)2]
    =116(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b)
    =116×2p×(2p﹣2c)(2p﹣2b)(2p﹣2a)
    =p(p﹣a)(p﹣b)(p﹣c),
    ∴14[a2b2-(a2+b2-c22)2]=p(p-a)(p-b)(p-c);
    (3)连接OA、OB、OC,如图所示:
    S=S△AOB+S△AOC+S△BOC=12rc+12rb+12ra=(a+b+c2)r=pr.

    28.解:(1)将点A、B的坐标代入二次函数表达式得:y=a(x﹣1)(x﹣5)=a(x2﹣6x+5),
    则5a=4,解得:a=45,
    抛物线的表达式为:y=45(x2﹣6x+5)=45x2-245x+4,
    函数的对称轴为:x=3,
    顶点坐标为(3,-165);
    (2)连接B、C交对称轴于点P,此时PA+PC的值为最小,

    将点B、C的坐标代入一次函数表达式:y=kx+b得:0=5k+bb=4,
    解得:k=-45b=4,
    直线BC的表达式为:y=-45x+4,
    当x=3时,y=85,
    故点P(3,85);
    (3)存在,理由:
    四边形OEBF是以OB为对角线且面积为12的平行四边形,
    则S四边形OEBF=OB×yE=5×yE=12,
    则yE=125,将该坐标代入二次函数表达式得:
    y=45(x2﹣6x+5)=125,
    解得:x=3±7,
    故点E的坐标为(3-7,125)或(3+7,125).














































    2018年青海省中考数学试卷
    一、填空题(本大题共12小题15空,每空2分,共30分).
    1.﹣的倒数是   ;4的算术平方根是   .
    2.分解因式:x3y﹣4xy=   ;不等式组的解集是   
    3.近年来,党和国家高度重视精准扶贫,收效显著,据不完全统计约有65000000人脱贫,65000000用科学记数法表示为   .
    4.函数y=中自变量x的取值范围是   .
    5.如图,直线AB∥CD,直线EF与AB、CD相交于点E、F,∠BEF的平分线EN与CD相交于点N.若∠1=65°,则∠2=   .
            
    6.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC=25°,则∠BAD=   .
    7.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则=   .
    8.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是   元.
                 
    9.如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=   .
    10.在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C的度数是   .
    11.如图,用一个半径为20cm,面积为150πcm2的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r为   cm.
    12.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案
    中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有   个正方形,第n
    个图案中有   个正方形.

    二、单项选择题(本大题共8小题,每小题3分,共24分).
    13.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是(  )
    A.有一个实数根  B.有两个相等的实数根  C.有两个不相等的实数根  D.没有实数根
    14.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是(  )
    A. B. C. D.
    15.若P1(x1,y1),P2(x2,y2)是函数y=图象上的两点,当x1>x2>0时,下列结论正确的是(  )
    A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<0
    16.某班举行趣味项目运动会,从商场购买了一定数量的乒乓球拍和羽毛球拍作为奖品.若每副羽毛球拍的价格比乒乓球拍的价格贵6元,且用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同.设每副乒乓球拍的价格为x元,则下列方程正确的是(  )
    A.=    B.= C.=    D.=
    17.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有(  )
    A.3块 B.4块 C.6块 D.9块
               
    18.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于(  )
    A.150° B.180° C.210° D.270°
    19.如图,把直角三角形ABO放置在平面直角坐标系中,已知∠OAB=30°,B点的坐标为(0,2),将△ABO沿着斜边AB翻折后得到△ABC,则点C的坐标是(  )
    A.(2,4) B.(2,2) C.() D.(,)
    20.均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是(  )
       A.   B.   C.    D.
    三、(本大题共3小题,第21题5分,第22题题5分,第23题8分,共18分).
    21.(5分)计算:tan30°++(﹣)﹣1+(﹣1)2018











    22.(5分)先化简,再求值:(1﹣)÷,其中m=2+.










    23.(8分)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于
    点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.

     








    四、(本大题共3小题,第24题8分,第25题8分,第26题9分,共25分).
    24.(8分)如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).








    25.(8分)如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.
    (1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.

























    26.(9分)某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查.随机调查了某班所有同学最喜欢的节目(每名学生必选且只能选择四类节目中的一类)并将调查结果绘成如下不完整的统计图.根据两图提供的信息,回答下列问题:
    (1)最喜欢娱乐类节目的有   人,图中x=   ;
    (2)请补全条形统计图;
    (3)根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;
    (4)在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.

















    五、(本大题共2小题,第27题11分,第28题12分,共23分).
    27.(11分)请认真阅读下面的数学小探究系列,完成所提出的问题:
    (1)探究1:如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.求证:△BCD的面积为a2.(提示:过点D作BC边上的高DE,可证△ABC≌△BDE)
    (2)探究2:如图2,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.请用含a的式子表示△BCD的面积,并说明理由.
    (3)探究3:如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.试探究用含a的式子表示△BCD的面积,要有探究过程.

















    28.(12分)如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.
    (1)求抛物线的解析式;
    (2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;
    (3)条件同(2),若△ODP与△COB相似,求点P的坐标.

     
    2018年青海省中考数学试卷答案
    1.﹣5、2.2. xy(x+2)(x﹣2);﹣3≤x<2.3. 6.5×107.4. x≥﹣2且x≠1.
    5. 50°.6. 70°.7. .8. 15.3.9. 125°.10. 90°.11. 7.5cm.12. 14、3n﹣1.
    13. C.14. D.15. A.16. B.17. B.18. C.19. C.20. D.
    21.解:原式=×+2﹣2+1=1+2﹣2+1=2.
    22.解:原式=÷
    =•
    =,
    当m=2+时,
    原式===+1.
    23.解:(1)∵E是AB边上的中点,
    ∴AE=BE.
    ∵AD∥BC,
    ∴∠ADE=∠F.
    在△ADE和△BFE中,∠ADE=∠F,∠DEA=∠FEB,AE=BE,
    ∴△ADE≌△BFE.
    ∴AD=BF.
    (2)过点D作DM⊥AB与M,则DM同时也是平行四边形ABCD的高.

    ∴S△AED=•AB•DM=AB•DM=×32=8,
    ∴S四边形EBCD=32﹣8=24.
    24.解:过C作CE⊥AB于E,设CE=x米,
    在Rt△AEC中:∠CAE=45°,AE=CE=x
    在Rt△BCE中:∠CBE=30°,BE=CE=x,
    ∴x=x+60解之得:x=30+30≈81.96.
    答:河宽约为81.96米.

    25.解:(1)证明:连接OA,

    ∵∠B=60°,
    ∴∠AOC=2∠B=120°,
    又∵OA=OC,
    ∴∠OAC=∠OCA=30°,
    又∵AP=AC,
    ∴∠P=∠ACP=30°,
    ∴∠OAP=∠AOC﹣∠P=90°,
    ∴OA⊥PA,
    ∴PA是⊙O的切线.
    (2)在Rt△OAP中,∵∠P=30°,
    ∴PO=2OA=OD+PD,
    又∵OA=OD,
    ∴PD=OA,
    ∵PD=,
    ∴2OA=2PD=2.
    ∴⊙O的直径为2.
    26.解:(1)∵被调查的总人数为6÷12%=50人,
    ∴最喜欢娱乐类节目的有50﹣(6+15+9)=20,x%=×100%=18%,即x=18,
    故答案为:20、18;
    (2)补全条形图如下:

    (3)估计该校最喜欢娱乐类节目的学生有1800×=720人;
    (4)画树状图得:

    ∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,
    ∴恰好同时选中甲、乙两位同学的概率为=.
    27.解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,
    ∴∠BED=∠ACB=90°,
    由旋转知,AB=BD,∠ABD=90°,
    ∴∠ABC+∠DBE=90°,
    ∵∠A+∠ABC=90°,
    ∴∠A=∠DBE,
    在△ABC和△BDE中,

    ∴△ABC≌△BDE(AAS)
    ∴BC=DE=a.
    ∵S△BCD=BC•DE
    ∴S△BCD=;
    解:(2)△BCD的面积为.
    理由:如图2,过点D作BC的垂线,与BC的延长线交于点E.
    ∴∠BED=∠ACB=90°,
    ∵线段AB绕点B顺时针旋转90°得到线段BE,
    ∴AB=BD,∠ABD=90°.
    ∴∠ABC+∠DBE=90°.
    ∵∠A+∠ABC=90°.
    ∴∠A=∠DBE.
    在△ABC和△BDE中,

    ∴△ABC≌△BDE(AAS)
    ∴BC=DE=a.
    ∵S△BCD=BC•DE
    ∴S△BCD=;
    (3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,
    ∴∠AFB=∠E=90°,BF=BC=a.
    ∴∠FAB+∠ABF=90°.
    ∵∠ABD=90°,
    ∴∠ABF+∠DBE=90°,
    ∴∠FAB=∠EBD.
    ∵线段BD是由线段AB旋转得到的,
    ∴AB=BD.
    在△AFB和△BED中,

    ∴△AFB≌△BED(AAS),
    ∴BF=DE=a.
    ∵S△BCD=BC•DE=•a•a=a2.
    ∴△BCD的面积为.

    28.解:(1)把A(﹣1,0),B(3,0),C(0,2)代入y=ax2+bx+c得:,
    解得:a=﹣,b=,c=2,
    ∴抛物线的解析式为y=﹣x2+x+2.
    (2)设点P的坐标为(t,﹣t2+t+2).
    ∵A(﹣1,0),B(3,0),
    ∴AB=4.
    ∴S=AB•PD=×4×(﹣t2+t+2)=﹣t2+t+4(0<t<3);
    (3)当△ODP∽△COB时,=即=,
    整理得:4t2+t﹣12=0,
    解得:t=或t=(舍去).
    ∴OD=t=,DP=OD=,
    ∴点P的坐标为(,).
    当△ODP∽△BOC,则=,即=,
    整理得t2﹣t﹣3=0,
    解得:t=或t=(舍去).
    ∴OD=t=,DP=OD=,
    ∴点P的坐标为(,).
    综上所述点P的坐标为(,)或(,).
































    2017年青海省中考数学试卷
    一、填空题(本大题共12小题15空,每空2分,共30分)
    1.﹣7×2的绝对值是   ;19 的平方根是   .
    2.分解因式:ax2﹣2ax+a=   ;计算:2x2-1÷4+2x(x-1)(x+2)=   .
    3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为   .
    4.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=   .

    5.如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=   度.
    6.如图,直线a∥b,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为   .
    7.若单项式2x2ym与-13xny4可以合并成一项,则nm=   .
    8.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为   .
    9.已知扇形的圆心角为240°,所对的弧长为16π3,则此扇形的面积是   .
    10.如图,在一个4×4的网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点.点A在格点上,动点P从A点出发,先向右移动2个单位长度到达P1,P1绕点A逆时针旋转90°到达P2,P2再向下移动2个单位长度回到A点,P点所经过的路径围成的图形是   图形(填“轴对称”或“中心对称”.)

    11.如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平地面的高度是   米(结果保留根号).
    12.观察下列各式的规律:
    (x﹣1)(x+1)=x2﹣1
    (x﹣1)(x2+x+1)=x3﹣1
    (x﹣1)(x3+x2+x+1)=x4﹣1…
    可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=   ;一般地(x﹣1)(xn+xn﹣1+x5+…+x2+x+1)=   .
    二、选择题(本大题共8小题,每小题3分,共24分).
    13.估计2+7的值(  )
    A.在2和3之间 B.在3和4之间 C.在4和5之间 D.在5和6之间
    14.在某次测试后,班里有两位同学议论他们小组的数学成绩,小明说:“我们组考87分的人最多”,小华说:“我们组7位同学成绩排在最中间的恰好也是87分”.上面两位同学的话能反映出的统计量是(  )
    A.众数和平均数 B.平均数和中位数 C.众数和方差 D.众数和中位数
    15.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为(  )
    A.54+x=80%×108 B.54+x=80%(108﹣x) C.54﹣x=80%(108+x) D.108﹣x=80%(54+x)
    16.已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB与CD的距离为(  )
    A.1 B.7 C.4或3 D.7或1
    17.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交DB于点F,则△DEF的面积与△BAF的面积之比为(  )
    A.1:3 B.3:4 C.1:9 D.9:16

    18.如图,正方形ABCD的对角线相交于点O,Rt△OEF绕点O旋转,在旋转过程中,两个图形重叠部分的面积是正方形面积的(  )
    A.14 B.13 C.12 D.34
    19.如图,已知A(﹣4,12),B(﹣1,2)是一次函数y1=kx+b(k≠0)与反比例函数y2=mx(m≠0,x<0)图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D,若y1>y2,则x的取值范围是(  )
    A.x<﹣4 B.﹣4<x<﹣1 C.x<﹣4或x>﹣1 D.x<﹣1
    20.如图,在矩形ABCD中,点P从点A出发,沿着矩形的边顺时针方向运动一周回到点A,则点A、P、D围成的图形面积y与点P运动路程x之间形成的函数关系式的大致图象是(  )
    A. B. C.D.
    三、(本大题共3小题,第21题5分,第22题5分,第23题7分,共17分).
    21.(5分)计算:(3﹣π)0﹣6cos30°+27-(12)-1.






    22.(5分)解分式方程:2x2-4-x2-x=1.




















    23.(7分)如图,在四边形ABCD中,AB=AD,AD∥BC.
    (1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.

     















    四、(本大题共3小题,第24题9分,第25题9分,第26题8分,共26分)
    24.(9分)某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.
    (1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.








































    25.(9分)如图,在△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,点E在BC边上,且满足EB=ED.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,AB=102,求sin∠CAE的值.




































    26.(8分)某批彩色弹力球的质量检验结果如下表:
    抽取的彩色弹力球数n
    500
    1000
    1500
    2000
    2500
    优等品频数m
    471
    946
    1426
    1898
    2370
    优等品频率mn
    0.942
    0.946
    0.951
    0.949
    0.948
    (1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图
    (2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)
    (3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.
    (4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为14,求取出了多少个黑球?




















    五、(本大题共2小题,第27题11分,第28题12分,共23分)
    27.(11分)请完成如下探究系列的有关问题:
    探究1:如图1,△ABC是等腰直角三角形,∠BAC=90°,点D为BC上一动点,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF,则线段CF,BD之间的位置关系为   ,数量关系为   .
    探究2:如图2,当点D运动到线段BC的延长线上,其余条件不变,探究1中的两条结论是否仍然成立?为什么?(请写出证明过程)
    探究3:如图3,如果AB≠AC,∠BAC≠90°,∠BCA仍然保留为45°,点D在线段BC上运动,请你判断线段CF,BD之间的位置关系,并说明理由.






























    28.(12分)如图,抛物线y=12x2-32x﹣2与x轴交于A,B两点,与y轴交于点C,点D与点C关于x轴对称.(1)求点A、B、C的坐标.(2)求直线BD的解析式.(3)在直线BD下方的抛物线上是否存在一点P,使△PBD的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.

     

    2017年青海省中考数学试卷答案
    1. 14;±13.2. a(x﹣1)2;1x+1.3. 4.4×109.4. 24°.5. 115°.6. 35°.7. 16.
    8. 415.9. 32π3.10.轴对称.11. 503.12. x8﹣1;xn+1﹣1.
    13. C.14. D.15. B.16. D.17. D.18. A.19. B.20. A.
    21.解:原式=1﹣6×32+33﹣2=﹣1.
    22.解:方程两边同乘(x2﹣4),得
    2+x(x+2)=x2﹣4,
    整理得 2+x2+2x=x2﹣4,
    2x=﹣6,
    x=﹣3,
    检验:当x=﹣3时,x2﹣4=5≠0,
    ∴原方程的解为x=﹣3.
    23.解:(1)如图:
    (2)证明:如图,连接DF,
    ∵AD∥BC,∴∠ADE=∠EBF,
    ∵AF垂直平分BD,∴BE=DE.
    在△ADE和△FBE中,&∠ADE=∠EBF&∠AED=∠FEB&BE=DE
    ∴△ADE≌△FBE(AAS),
    ∴AE=EF,
    ∴BD与AF互相垂直且平分,
    ∴四边形ABFD为菱形.

    24.解:(1)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了y台,则&x+y=50&3100x+4600y=200000,
    解得&x=20&y=30,
    答:甲种品牌的电脑购买了20台,乙种品牌的电脑购买了30台.
    (2)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了(50﹣x)台,则&x≥1&50-x≥1&3100x+4600(50-x)≤160000,
    解得1403≤x≤49,
    ∴x的整数值为47,48、49,
    当x=47时,50﹣x=3;当x=48时,50﹣x=2;当x=49时,50﹣x=1.
    ∴一共有两种购买方案,甲种品牌的电脑购买48台,乙种品牌的电脑购买2台;甲种品牌的电脑购买49台,乙种品牌的电脑购买1台.
    ∵甲、乙两种品牌的电脑单价分别3100元和4600元.
    ∴甲种品牌的电脑购买49台,乙种品牌的电脑购买1台比较省钱.
    25.(1)证明:如图,连接OD、OE.
    在△ODE和△OBE中
    ∵&OD=OB&OE=OE&DE=BE,
    ∴△ODE≌△OBE(SSS),
    ∴∠ODE=∠ABC=90°,
    ∴DE是⊙O的切线.
    (2)解:如图,连接BD,作EF⊥AC于点F.
    ∵AB为⊙O的直径,
    ∴BD⊥AC,
    ∵∠C=45°,∠ABC=90°,
    ∴△ABC为等腰直角三角形.
    ∴D点为AC的中点,
    ∴OD∥BC,
    ∴∠BOD=90°.
    ∴四边形OBED为正方形.
    ∵AB=102,
    ∴AC=20.
    ∴CD=10,DE=52,
    ∵EF⊥AC,
    ∴EF=DF=5,
    ∴AF=15,
    ∴AE=AF2+EF2=152+52=510,
    ∴sin∠CAE=EFAE=5510=1010.

    26.解:(1)如图,

    (2)15×(0.942+0.946+0.951+0.949+0.948)=15×4.736=0.9472≈0.95.
    (3)P(摸出一个球是黄球)=55+13+22=18.
    (4)设取出了x个黑球,则放入了x个黄球,则5+x5+13+22=14,解得x=5.
    答:取出了5个黑球.
    27.解:探究1:∵∠BAC=90°,
    ∴∠BAD+∠CAD=90°,
    ∵四边形ADEF为正方形,
    ∴∠DAF=90°,
    ∴∠CAD+∠CAF=90°,
    ∴∠BAD=∠CAF.
    ∴在△ABD和△ACF中,&AB=AC&∠BAD=∠CAF&AD=AF,
    ∴△ABD≌△ACF(SAS),
    ∴CF=BD,∠ACF=∠B=45°,
    ∴∠BCF=90°,
    ∴CF⊥BD;
    故答案为:CF⊥BD,CF=BD;
    探究2:探究1中的两条结论是否仍然成立.
    理由如下:
    ∵∠BAC=90°,
    ∴∠BAD=90°+∠CAD,
    ∵四边形ADEF为正方形,
    ∴∠DAF=90°+∠CAD,
    ∴∠BAD=∠CAF.
    ∴在△ABD和△ACF中,&AB=AC&∠BAD=∠CAF&AD=AF,
    ∴△ABD≌△CAF(SAS),
    ∴CF=BD,∠ACF=∠B=45°,
    ∴∠BCF=90°,
    ∴CF⊥BD.
    探究3:线段CF,BD之间的位置关系是CF⊥BD.
    理由如下:
    如图,过点A作AP⊥AC,交BC于点P.
    ∵∠BCA=45°,∴∠APD=45°,AP=AC.
    ∵四边形ADEF为正方形,∴AD=AC.
    ∴△APD≌△ACF(SAS),
    ∴∠ACF=45°,
    ∴∠BCF=∠BCA+∠ACF=90°,
    ∴线段CF,BD之间的位置关系是CF⊥BD.

    28.解:(1)解方程12x2-32x-2=0,得x1=﹣1,x2=4,
    ∴A点坐标为(﹣1,0),B点坐标为(4,0).
    当x=0时,y=﹣2,
    ∴C点坐标为(0,﹣2).
    (2)∵点D与点C关于x轴对称,∴D点坐标为(0,2).
    设直线BD的解析式为y=kx+b,则&0=4k+b&2=0k+b,解得&k=-12&b=2,
    ∴直线BD的解析式为y=-12x+2.
    (3)如图,作PE∥y轴交BD于E,设P(m,12m2﹣32m﹣2),则E(m,﹣12m+2)

    ∴PE=﹣12m+2﹣(12m2﹣32m﹣2)=﹣12m2+m+4,
    ∴S△PBD=12•PE•(xB﹣xD)=12×(﹣12m2+m+4)×4=﹣m2+2m+8=﹣(m﹣1)2+9,
    ∵﹣1<0,
    ∴m=1时,△PBD的面积最大,面积的最大值为9.
    ∴P(1,﹣3).
    相关试卷

    2021年青海省中考数学试卷: 这是一份2021年青海省中考数学试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2018年青海省中考数学试卷与答案: 这是一份2018年青海省中考数学试卷与答案,共12页。试卷主要包含了填空题.,单项选择题.等内容,欢迎下载使用。

    2017年青海省中考数学试卷与答案: 这是一份2017年青海省中考数学试卷与答案,共10页。试卷主要包含了填空题,选择题.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map