浙教版七年级上册第2章 有理数的运算2.3 有理数的乘法第1课时教学设计
展开2.3 有理数的乘法(第1课时)
一、教学目标:
1.在理解有理数乘法意义的基础上,掌握有理数的乘法法则,并正确地进行乘法运算.2.理解几个有理数相乘,积的符号如何确定.
3.理解有理数的倒数定义.
二、教学重难点:
重点:了解有理数乘法法则的发现及形成过程,掌握乘法法则,运用乘法法则准确地进行有理数的运算.
难点:掌握有理数乘法法则中的符号规则,并能准确、熟练地应用于有理数乘法运算中去.
三、教学过程:
(一)导入新课:
节前图显示的是位于三峡白鹤梁的用做水为测量标志的线刻石鱼,假设水位按每小时3厘米的速度下降,经过2小时后水位下降多少厘米?
这个实际问题与有理数的乘法有什么联系呢?让我们来共同研究吧.
由上面的问题可知,经2小时后水位变化了3×2=3+3=6 cm.根据生活经验及前面的结果,如果把下降记为“-”,则有(-3)×2=-6 cm.
师生共同完成P39做一做,从而引出课题:有理数的乘法.
(二)探究新知:
1.根据上述结果,结合生活中的经验,自编一道类似的实际问题,并把要求的结果写成像(-3)×2=-6这样的算式.
2.由上面的问题所写的负数与正数的乘法运算方法,计算:
(-3)×4= ;(-3)×3= ;(-3)×2= ;(-3)×1= .
结合课本,用数轴表示上述相应算式的几何意义.
3.计算下列各式,并回答:若一个因数继续逐级减少,下面的积会有什么变化?
(-3)×(-1)= ;(-3)×(-2)= ;
(-3)×(-3)= ;(-3)×(-4)= .
此外,如果有一个因数是0,所得的积还是0.如:
0×(-3)=0,×0 =0,0×(-3)=0.
思考:如何确定两个有理数的积的符号和绝对值?从以上得出的几个算式,你能发现什么规律?
通过特例的归纳,鼓励学生自己总结有理数的乘法法则.并运用自己的语言加以描述,与同伴交流共同完成.
综合以上各种情况,我们有有理数的乘法法则:
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,积为零.
例如:(-5)×(-3)……………………………… 同号两数相乘
(-5)×(-3)=+( )……………………………得正
5×3=15…………………………………………把绝对值相乘
所以(-5)×(-3)=15.
(-6)×4………………………………………异号两数相乘
(-6)×4=-( )……………………………………得负
6×4=24…………………………………………把绝对值相乘
所以(-6)×4=-24.
4.例题讲解:
例1 :计算:
(1)×; (2) (-2.5)×4 ; (3) (-5)×0×;
(4) (-)×(-3); (5) (-6)×(-)×(-4)
按课本讲解、板书.(组织学生口头回答例题的解答.有理数乘法运算分两步:确定积的符号;把绝对值相乘.)
探究以下三个问题:
问题1: 与这两数有何关系?-与-3呢?类比小学学过的有关倒数的定义.
在小学我们学过,两个正有理数乘积为1时,称这两个正有理数互为倒数.同样,这个规定在负数中仍然适用.
若两个有理数的乘积为1,就称这两个有理数互为倒数.例如,是的倒数,是的倒数,-与-3互为倒数.0没有倒数.
问题2:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为0时,积是多少?
有多个不为零的有理数相乘时,可以先确定符号,再将绝对值相乘.当相乘的数中,负数有奇数个时,积为负;负数有偶数个时,积为正.若其中一个乘数为零时,积为零.
补充例题:
Ⅰ.计算:(-3)×× (-1)× (-)
渗透化归思想,有理数的乘法实际上就是在确定完积的符号后,转化为小学中算术数的乘法.
Ⅱ.某一物体温度每小时上升a度,现在温度是0度.问:
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2; ③a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
(三)课内小结:
通过本节课的学习,大家学会了什么?
(1)有理数的乘法法则.
(2)多个不等于0的有理数相乘,积的符号由负因数的个数决定.
(3)几个数相乘时,如果有一个因数是0,则积就为0.
(4)乘积是1的两个有理数互为倒数.
(四)课堂练习:
(五)作业布置:
初中数学浙教版七年级上册2.3 有理数的乘法教案: 这是一份初中数学浙教版七年级上册2.3 有理数的乘法教案,共6页。教案主要包含了创设情景,引出课题,典例精讲,巩固训练等内容,欢迎下载使用。
浙教版七年级上册2.3 有理数的乘法教学设计及反思: 这是一份浙教版七年级上册2.3 有理数的乘法教学设计及反思,共7页。教案主要包含了创设情景,引出课题,典例精讲,巩固训练等内容,欢迎下载使用。
2020-2021学年第2章 有理数的运算2.3 有理数的乘法教学设计及反思: 这是一份2020-2021学年第2章 有理数的运算2.3 有理数的乘法教学设计及反思,共6页。教案主要包含了创设情景,引出课题,典例精讲,巩固训练等内容,欢迎下载使用。