终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2014年苏州市中考数学试卷及答案

    立即下载
    加入资料篮
    2014年苏州市中考数学试卷及答案第1页
    2014年苏州市中考数学试卷及答案第2页
    2014年苏州市中考数学试卷及答案第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2014年苏州市中考数学试卷及答案

    展开

    这是一份2014年苏州市中考数学试卷及答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2014年江苏省苏州市中考数学试卷
    一、选择题(共10小题,每小题3分,共30分)
    1.(﹣3)×3的结果是(  )
     
    A.
    ﹣9
    B.
    0
    C.
    9
    D.
    ﹣6
    2.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为(  )
     
    A.
    30°
    B.
    60°
    C.
    70°
    D.
    150°
    3.有一组数据:1,3,3,4,5,这组数据的众数为(  )
     
    A.
    1
    B.
    3
    C.
    4
    D.
    5
    4.若式子在实数范围内有意义,则x的取值范围是(  )
     
    A.
    x≤﹣4
    B.
    x≥﹣4
    C.
    x≤4
    D.
    x≥4
    5.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是(  )
     
    A.

    B.

    C.

    D.


    6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为(  )
     
    A.
    30°
    B.
    40°
    C.
    45°
    D.
    60°
    7.下列关于x的方程有实数根的是(  )
     
    A.
    x2﹣x+1=0
    B.
    x2+x+1=0
    C.
    (x﹣1)(x+2)=0
    D.
    (x﹣1)2+1=0
    8.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为(  )
     
    A.
    ﹣3
    B.
    ﹣1
    C.
    2
    D.
    5
    9.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为(  )
     
    A.
    4km
    B.
    2km
    C.
    2km
    D.
    (+1)km
    10.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为(  )

     
    A.
    (,)
    B.
    (,)
    C.
    (,)
    D.
    (,4)
    二、填空题(共8小题,每小题3分,共24分)
    11.的倒数是  .
    12.已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为   .
    13.已知正方形ABCD的对角线AC=,则正方形ABCD的周长为   .
    14.某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有   人.

    15.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=   .
    16.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为   .
    17.如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为   .

    18.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是   .
    三、解答题(共11小题,共76分)
    19.(5分)计算:22+|﹣1|﹣.

     











    20.(5分)解不等式组:.

     










    21.(5分)先化简,再求值:,其中.

     











    22.(6分)解分式方程:+=3.

     











    23.(6分)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
    (1)求证:△BCD≌△FCE;
    (2)若EF∥CD,求∠BDC的度数.


     






    24.(7分)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.
    (1)求点A的坐标;(2)若OB=CD,求a的值.


     










    25.(7分)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.


     










    26.(8分)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.
    (1)求△OCD的面积;(2)当BE=AC时,求CE的长.


     








    27.(8分)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.
    (1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;
    (2)求证:BF=BD;
    (3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.


     





























    28.(9分)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)
    (1)如图①,连接OA、AC,则∠OAC的度数为 105 °;
    (2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
    (3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).


     



























    29.(10分)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
    (1)用含m的代数式表示a;
    (2)求证:为定值;xKb 1.C om
    (3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.
















    2014年江苏省苏州市中考数学试卷答案
    一、
    1.
     
    A.
    2.
     
    A.
    3.
     
    B.

    4.
     
    D.

    5.
     
    D.

    6.
     
    B.
    7.
     
    C.
    8.
     
    B.
    9.
     
    C.
    10.
     
    A.
    C.
    二、
    11.  .
    12. 5.1×108 .
    13. 4 .
    14. 240 
    15.  .
    16. 20 .
    17. 5 .
    18. 2 .
    三、19.

    解:原式=4+1﹣2=3.
    20.
    解:,
    由①得:x>3;由②得:x≤4,
    则不等式组的解集为3<x≤4.
    21.
    解:
    =÷(+)


    =,
    把,代入原式====.
    22.


    解:去分母得:x﹣2=3x﹣3,
    解得:x=,
    经检验x=是分式方程的解.
    23.
    (1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,
    ∴CD=CE,∠DCE=90°,
    ∵∠ACB=90°,
    ∴∠BCD=90°﹣∠ACD=∠FCE,
    在△BCD和△FCE中,

    ∴△BCD≌△FCE(SAS).

    (2)解:由(1)可知△BCD≌△FCE,
    ∴∠BDC=∠E,
    ∵EF∥CD,
    ∴∠E=180°﹣∠DCE=90°,
    ∴∠BDC=90°.
    24.
    解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,
    ∴点M的坐标为(2,2),
    把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,
    ∴一次函数的解析式为y=﹣x+3,
    把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,
    ∴A点坐标为(6,0);

    (2)把x=0代入y=﹣x+3得y=3,
    ∴B点坐标为(0,3),
    ∵CD=OB,
    ∴CD=3,
    ∵PC⊥x轴,
    ∴C点坐标为(a,﹣a+3),D点坐标为(a,a)
    ∴a﹣(﹣a+3)=3,
    ∴a=4.
    25.
    解:画树状图,如图所示:

    所有等可能的情况有8种,其中A、C两个区域所涂颜色不相同的有4种,
    则P==.
    26.
    解;(1)y=(x>0)的图象经过点A(1,2),
    ∴k=2.
    ∵AC∥y轴,AC=1,
    ∴点C的坐标为(1,1).
    ∵CD∥x轴,点D在函数图象上,
    ∴点D的坐标为(2,1).
    ∴.

    (2)∵BE=,
    ∴.
    ∵BE⊥CD,
    ∴点B的横坐标是,纵坐标是.
    ∴CE=.
    27.
    (1)解:连接OB,OD,
    ∵∠DAB=120°,∴所对圆心角的度数为240°,
    ∴∠BOD=120°,
    ∵⊙O的半径为3,
    ∴劣弧的长为:×π×3=2π;

    (2)证明:连接AC,
    ∵AB=BE,∴点B为AE的中点,
    ∵F是EC的中点,∴BF为△EAC的中位线,
    ∴BF=AC,
    ∵=,
    ∴+=+,
    ∴=,
    ∴BD=AC,
    ∴BF=BD;

    (3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,
    ∵BF为△EAC的中位线,
    ∴BF∥AC,
    ∴∠FBE=∠CAE,
    ∵=,
    ∴∠CAB=∠DBA,
    ∵由作法可知BP⊥AE,
    ∴∠GBP=∠FBP,
    ∵G为BD的中点,
    ∴BG=BD,
    ∴BG=BF,
    在△PBG和△PBF中,

    ∴△PBG≌△PBF(SAS),
    ∴PG=PF.

    28.
    解:(1)∵l1⊥l2,⊙O与l1,l2都相切,
    ∴∠OAD=45°,
    ∵AB=4cm,AD=4cm,
    ∴CD=4cm,AD=4cm,
    ∴tan∠DAC===,
    ∴∠DAC=60°,
    ∴∠OAC的度数为:∠OAD+∠DAC=105°,
    故答案为:105;

    (2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,
    连接O1E,可得O1E=2,O1E⊥l1,
    在Rt△A1D1C1中,∵A1D1=4,C1D1=4,
    ∴tan∠C1A1D1=,∴∠C1A1D1=60°,
    在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,
    ∴A1E==,
    ∵A1E=AA1﹣OO1﹣2=t﹣2,
    ∴t﹣2=,
    ∴t=+2,
    ∴OO1=3t=2+6;

    (3)①当直线AC与⊙O第一次相切时,设移动时间为t1,
    如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,
    设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,
    ∴O2F⊥l1,O2G⊥A2G2,
    由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,
    ∴∠O2A2F=60°,
    在Rt△A2O2F中,O2F=2,∴A2F=,
    ∵OO2=3t,AF=AA2+A2F=4t1+,
    ∴4t1+﹣3t1=2,
    ∴t1=2﹣,
    ②当直线AC与⊙O第二次相切时,设移动时间为t2,
    记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,
    由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,
    ∴+2﹣(2﹣)=t2﹣(+2),
    解得:t2=2+2,
    综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.
    29.
    (1)解:将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),
    则﹣3=a(0﹣0﹣3m2),
    解得 a=.

    (2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.

    由a(x2﹣2mx﹣3m2)=0,
    解得 x1=﹣m,x2=3m,
    则 A(﹣m,0),B(3m,0).
    ∵CD∥AB,
    ∴点D的坐标为(2m,﹣3).
    ∵AB平分∠DAE,
    ∴∠DAM=∠EAN,
    ∵∠DMA=∠ENA=90°,
    ∴△ADM∽△AEN.
    ∴==.
    设E坐标为(x,),
    ∴=,
    ∴x=4m,
    ∴E(4m,5),
    ∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,
    ∴==,即为定值.

    (3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH⊥x轴于点H.
    连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.

    ∵tan∠CGO=,tan∠FGH=,
    ∴=,
    ∴OG=3m.
    ∵GF===4,
    AD===3,
    ∴=.
    ∵=,
    ∴AD:GF:AE=3:4:5,
    ∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.


    相关试卷

    2016年苏州市中考数学试卷及答案:

    这是一份2016年苏州市中考数学试卷及答案,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2013年苏州市中考数学试卷及答案:

    这是一份2013年苏州市中考数学试卷及答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2012年苏州市中考数学试卷及答案:

    这是一份2012年苏州市中考数学试卷及答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map