2018年深圳市中考数学试卷及答案
展开这是一份2018年深圳市中考数学试卷及答案,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2018年广东省深圳市中考数学试卷
一、选择题:(本大题共12个小题,每小题3分,共36分.)
1.6的相反数是( )
A.﹣6 B. C. D.6
2.260000000用科学记数法表示为( )
A.0.26×109 B.2.6×108 C.2.6×109 D.26×107
3.图中立体图形的主视图是( )
A. B. C. D.
4.观察下列图形,是中心对称图形的是( )
A. B. C. D.
5.下列数据:75,80,85,85,85,则这组数据的众数和极差是( )
A.85,10 B.85,5 C.80,85 D.80,10
6.下列运算正确的是( )
A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2 D.
7.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )
A.(2,2) B.(2,3) C.(2,4) D.(2,5)
8.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )
A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180° D.∠1+∠4=180°
9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )
A. B. C. D.
10.如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是( )
A.3 B. C.6 D.
11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是( )
A.abc>0 B.2a+b<0 C.3a+c<0 D.ax2+bx+c﹣3=0有两个不相等的实数根
12.如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是( )
①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16
A.①③ B.②③ C.②④ D.③④
二、填空题(每题3分,满分12分)
13.分解因式:a2﹣9= .
14.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率: .
15.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是 .
16.在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .
三、解答题(本大题共7小题,共72分.)
17.(5分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.
18.(6分)先化简,再求值:,其中x=2.
19.(7分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
| 频数 | 频率 |
体育 | 40 | 0.4 |
科技 | 25 | a |
艺术 | b | 0.15 |
其它 | 20 | 0.2 |
请根据上图完成下面题目:
(1)总人数为 人,a= ,b= .(2)请你补全条形统计图.
(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
20.(8分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.
(1)求证:四边形ACDB为△FEC的亲密菱形; (2)求四边形ACDB的面积.
21.(8分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
22.(9分)如图在⊙O中,BC=2,AB=AC,点D为AE上的动点,且cosB=.
(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.
23.(9分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.
2018年广东省深圳市中考数学参考答案
一、1. A.2. B.3. B.4. D.5. A.6. B.7. D.8. B.9. A.10. D.11. C.12. B.
二、13.(a+3)(a﹣3).14. .15. 8.16. .
三、17.解:原式=2﹣2×++1=3.
18.解:原式=
把x=2代入得:原式=
19.解:(1)总人数为40÷0.4=100人,
a=25÷100=0.25、b=100×0.15=15,
故答案为:100、0.25、15;
(2)补全条形图如下:
(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.
20.(1)证明:∵由已知得:AC=CD,AB=DB,
由已知尺规作图痕迹得:BC是∠FCE的角平分线,
∴∠ACB=∠DCB,
又∵AB∥CD,∴∠ABC=∠DCB,
∴∠ACB=∠ABC,∴AC=AB,
又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,
∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,
∴四边形ACDB为△FEC的亲密菱形;
(2)解:设菱形ACDB的边长为x,
∵四边形ACDB是菱形,∴AB∥CE,
∴∠FAB=∠FCE,∠FBA=∠E,∴△FAB∽△FCE
∴,
即,解得:x=4,
过A点作AH⊥CD于H点,
∵在Rt△ACH中,∠ACH=45°,
∴,∴四边形ACDB的面积为:.
21.解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,
根据题意得:3•=,
解得:x=8,经检验,x=8是分式方程的解.
答:第一批饮料进货单价为8元.
(2)设销售单价为m元,
根据题意得:200(m﹣8)+600(m﹣10)≥1200,
解得:m≥11.
答:销售单价至少为11元.
22.解:(1)作AM⊥BC,
∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,
∵cosB==,
在Rt△AMB中,BM=1,∴AB==;
(2)连接DC,
∵AB=AC,∴∠ACB=∠ABC,
∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,
∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,
∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;
(3)在BD上取一点N,使得BN=CD,
在△ABN和△ACD中
,
∴△ABN≌△ACD(SAS),∴AN=AD,
∵AN=AD,AH⊥BD,∴NH=HD,
∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.
23.解:(1)把点代入,
解得:a=1,∴抛物线的解析式为:;
(2)由知A(,﹣2),
设直线AB解析式为:y=kx+b,代入点A,B的坐标,
得:,
解得:,∴直线AB的解析式为:y=﹣2x﹣1,
易求E(0,1),,,
若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,
∴,
设点P(t,﹣2t﹣1),则:
解得,,
由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,
∵△POE的面积=,∴△POE的面积为或.
(3)若点Q在AB上运动,如图1,
设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,
由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,
由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
∴==,即===2,∴QR=2、ES=,
由NE+ES=NS=QR可得﹣a+=2,
解得:a=﹣,∴Q(﹣,);
若点Q在BC上运动,且Q在y轴左侧,如图2,
设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,
在Rt△SEN′中,(﹣a)2+12=a2,
解得:a=,∴Q(﹣,2);
若点Q在BC上运动,且点Q在y轴右侧,如图3,
设NE=a,则N′E=a,
易知RN′=2、SN′=1、QN′=QN=3,
∴QR=、SE=﹣a,
在Rt△SEN′中,(﹣a)2+12=a2,
解得:a=,∴Q(,2).
综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).
相关试卷
这是一份2017年深圳市中考数学试卷及答案,共5页。试卷主要包含了选择题,填空题,解答题17.计算等内容,欢迎下载使用。
这是一份2016年深圳市中考数学试卷及答案,共5页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2015年深圳市中考数学试卷及答案,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。