2014年温州市中考数学试卷及答案
展开这是一份2014年温州市中考数学试卷及答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2014年温州市中考数学试卷
一、选择题(共10小题,每小题4分,满分40分)
1.计算:(﹣3)+4的结果是( )
A. ﹣7 B. ﹣1 C. 1 D. 7
2.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )
A.5﹣10元 B.10﹣15元 C.15﹣20元 D.20﹣25元
3.如图所示的支架是由两个长方形构成的组合体,则它的主视图是( )
A. B. C. D.
4.要使分式有意义,则x的取值应满足( )
A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1
5.计算:m6•m3的结果( )
A.m18 B.m9 C.m3 D.m2
6.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是( )
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
最高气温(℃) | 22 | 24 | 23 | 25 | 24 | 22 | 21 |
A.22℃ B.23℃ C.24℃ D.25℃
7.一次函数y=2x+4的图象与y轴交点的坐标是( )
A.(0,﹣4) B.(0,4) C.(2,0) D.(﹣2,0)
第2题图 第8题图 第10题图
8.如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是( )
A.2∠C B.4∠B C.4∠A D.∠B+∠C
9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )
A. B. C. D.
10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是( )
A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大
二、填空题(共6小题,每小题5分,满分30分)
11.分解因式:a2+3a= .
12.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度.
第12题图 第14题图 第16题图
13.不等式3x﹣2>4的解是 .
14.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是 .
15.请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x= (写出一个x的值即可).
16.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是 .
三、解答题(共8小题,满分80分)
17.(10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;
(2)化简:(a+1)2+2(1﹣a)
18.(8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.
(1)图甲中的格点正方形ABCD;
(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.
19.(8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.
20.(10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
21.(10分)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).
(1)求该抛物线的解析式及顶点M的坐标.
(2)求△EMF与△BNE的面积之比.
22.(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.
∵S四边形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
∴b2+ab=c2+a(b﹣a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a2+b2=c2
证明:连结 过点B作DE边上的高BF,则BF=b﹣a,
∵S五边形ACBED= S△ACB+S△ABE+S△ADE=ab+b2+ab,
又∵S五边形ACBED= S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),
∴ ab+b2+ab=ab+c2+a(b﹣a), ∴a2+b2=c2.
23.(12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表
参赛同学 | 答对题数 | 答错题数 | 未答题数 |
A | 19 | 0 | 1 |
B | 17 | 2 | 1 |
C | 15 | 2 | 3 |
D | 17 | 1 | 2 |
E | / | / | 7 |
(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;
(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.
①求E同学的答对题数和答错题数;
②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)
24.(14分)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.
(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.
(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.
(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.
①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;
②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.
2014年温州市中考数学试卷答案
一、1.C. 2.C3.D4.A5.B6.B7.B8.A9.D10.C
二、11. a(a+3) .12. 80 .13. x>2 .14. . 15. (写出一个x的值即可).16. 12 .
三、17.解:(1)原式=2﹣10+9+1
=2;
(2)原式=a2+2a+1+2﹣2a
=a2+3.
18.解:(1)如图甲所示:
(2)如图乙所示:
19.解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,
∴从袋中摸出一个球是黄球的概率为:=;
(2)设从袋中取出x个黑球,
根据题意得:=,
解得:x=2,
经检验,x=2是原分式方程的解,
∴从袋中取出黑球的个数为2个.
20.解:(1)∵△ABC是等边三角形,
∴∠B=60°,
∵DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°﹣∠EDC=30°;
(2)∵∠ACB=60°,∠EDC=60°,
∴△EDC是等边三角形.
∴ED=DC=2,
∵∠DEF=90°,∠F=30°,
∴DF=2DE=4.
21.解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,
解得:c=3,
∴y=﹣x2+2x+3,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点M(1,4);
(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,
∴点B(3,0),
∴EM=1,BN=2,
∵EM∥BN,
∴△EMF∽△BNF,
∴=()2=()2=.
22.证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),
∴ab+b2+ab=ab+c2+a(b﹣a),
∴a2+b2=c2.
23解:(1)==82.5(分),
答:A,B,C,D四位同学成绩的平均分是82.5分.
(2)①设E同学答对x题,答错y题,由题意得
,
解得,
答:E同学答对12题,答错1题.
②C同学,他实际答对14题,答错3题,未答3题.
24.解:(1)∵OB=6,C是OB的中点,
∴BC=OB=3,
∴2t=3即t=,
∴OE=+3=,E(,0)
(2)如图,连接CD交OP于点G,
在▱PCOD中,CG=DG,OG=PG,
∵AO=PO,
∴AG=EG,
∴四边形ADEC是平行四边形.
(3)①(Ⅰ)当点C在BO上时,
第一种情况:如图,当点M在CE边上时,
∵MF∥OC,
∴△EMF∽△ECO,
∴=,即=,
∴t=1,
第二种情况:当点N在DE边
∵NF∥PD,
∴△EFN∽△EPD,
∴==,
∴t=,
(Ⅱ)当点C在BO的延长线上时,
第一种情况:当点M在DE边上时,
∵MF∥PD,
∴EMF∽△EDP,
∴= 即 =,
∴t=,
第二种情况:当点N在CE边上时,
∵NF∥OC,
∴△EFN∽△EOC,
∴=即 =,
∴t=5.
②<S≤或<S≤20.
当1≤t<时,
S=t(6﹣2t)=﹣2(t﹣)2+,
∵t=在1≤t<范围内,
∴<S≤,
当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣,
∴<S≤20.
相关试卷
这是一份2018年温州市中考数学试卷及答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2017年温州市中考数学试卷及答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2016年温州市中考数学试卷及答案,共8页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。