2016年青岛市中考数学试卷和答案
展开2016年青岛市中考数学试卷
一、选择题(本题满分24分,共有8道小题,每小题3分)
1.﹣的绝对值是( )
A.﹣ B.﹣ C. D.5
2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为( )
A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg
3.下列四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.计算a•a5﹣(2a3)2的结果为( )
A.a6﹣2a5 B.﹣a6 C.a6﹣4a5 D.﹣3a6
5.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P( a,b),则点户在A1B1上的对应点P的坐标为( )
A.(a﹣2,b+3) B.(a﹣2,b﹣3) C.(a+2,b+3) D.(a+2,b﹣3)
6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为( )
A.﹣=1 B.﹣=1
C.﹣=1 D.﹣=1
7.如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为( )
A.175πcm2 B.350πcm2 C.πcm2 D.150πcm2
8.输入一组数据,按下列程序进行计算,输出结果如表:
x | 20.5 | 20.6 | 20.7 | 20.8 | 20.9 |
输出 | ﹣13.75 | ﹣8.04 | ﹣2.31 | 3.44 | 9.21 |
分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为( )
A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
二、填空题(本题满分18分,共有6道小题,每小题3分)
9.计算: = .
10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有 名.
11.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= °.
12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为 .
13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为 .
14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中 虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为 cm3.
三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.
15.已知:线段a及∠ACB.
求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.
四、解答题(本题满分74分,共有9道小题)
16.(1)化简:﹣
(2)解不等式组,并写出它的整数解.
17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.
18.如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).
(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)
19.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
| 平均成绩/环 | 中位数/环 | 众数/环 | 方差 |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为m,到墙边似的距离分别为m, m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?
21.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点0.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由.
22.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:
月产销量y(个) | … | 160 | 200 | 240 | 300 | … |
每个玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?
问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.
探究一:
如图①,当n=5时,可将正方形分割为五个1×5的矩形.
如图②,当n=6时,可将正方形分割为六个2×3的矩形.
如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形
如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形
如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形
探究二:
当n=10,11,12,13,14时,分别将正方形按下列方式分割:
所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
探究三:
当n=15,16,17,18,19时,分别将正方形按下列方式分割:
请按照上面的方法,分别画出边长为18,19的正方形分割示意图.
所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.
实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)
24.已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:
(1)当t为何值时,△AOP是等腰三角形?
(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;
(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.
2016年青岛市中考数学试卷答案
一、1. C.2. D. 3.B.4. D.5. A.6. A.7. A.8. C.
二、9. 2.10. 2400.11. 62.12. .13. .14. 448﹣480.
三、15.解:①作∠ACB的平分线CD,
②在CD上截取CO=a,
③作OE⊥CA于E,以O我圆心,OE长为半径作圆;
如图所示:⊙O即为所求.
四、16.解:(1)原式=﹣==;
(2),
由①得:x≤1,
由②得:x≤,
则不等式组的解集为x≤1,
则不等式组的整数解为{x∈Z|x≤1}.
17.解:这个游戏对双方是公平的.
列表得:
∴一共有6种情况,积大于2的有3种,
∴P(积大于2)==,
∴这个游戏对双方是公平的.
18.解:作BF⊥AE于点F.则BF=DE.
在直角△ABF中,sin∠BAF=,则BF=AB•sin∠BAF=10×=6(m).
在直角△CDB中,tan∠CBD=,则CD=BD•tan65°=10×≈27(m).
则CE=DE+CD=BF+CD=6+27=33(m).
答:大楼CE的高度是33m.
19.解:(1)甲的平均成绩a==7(环),
∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击成绩的中位数b==7.5(环),
其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
=×(16+9+1+3+4+9)
=4.2;
(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,
综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
20.解:(1)根据题意得:B(,),C(,),
把B,C代入y=ax2+bx得,
解得:,
∴拋物线的函数关系式为y=﹣x2+2x;
∴图案最高点到地面的距离==1;
(2)令y=0,即﹣x2+2x=0,
∴x1=0,x2=2,
∴10÷2=5,
∴最多可以连续绘制5个这样的拋物线型图案.
21.(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠BAE=∠DCF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);
(2)解:四边形BEDF是菱形;理由如下:如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴DE=BF,
∴四边形BEDF是平行四边形,
∴OB=OD,
∵DG=BG,
∴EF⊥BD,
∴四边形BEDF是菱形.
22.解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设y=kx+b,则,满足函数关系式,得解得,
产销量y(个)与销售单价x (元)之间的函数关系式为y=﹣2x+860.
(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,将Q=60,y=160代入得到m=9600,
此时Q=.
(3)当Q=30时,y=320,由(1)可知y=﹣2x+860,所以y=270,即销售单价为270元,
由于=,∴成本占销售价的.
(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,
400≥﹣2x+860,解得x≥230,即销售单价最底为230元.
23.解:探究三:边长为18,19的正方形分割示意图,如图所示,
问题解决:若5≤n<10时,如探究一.
若n≥10,设n=5a+b,其中a、b为正整数,5≤b<10,则图形如图所示,
均可将正方形分割为一个5a×5a的正方形、一个b×b的正方形和两个5a×b的矩形.显然,5a×5a的正方形和5a×b的矩形均可分割为1x5的矩形,而b×b的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形即可.
问题解决:边长为61的正方形分割为一些1×5或2×3的矩形,如图所示,
.
24.解:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,
∴AC=10,
①当AP=PO=t,如图1,
过P作PM⊥AO,
∴AM=AO=,
∵∠PMA=∠ADC=90°,∠PAM=∠CAD,
∴△APM∽△ADC,
∴,
∴AP=t=,
②当AP=AO=t=5,
∴当t为或5时,△AOP是等腰三角形;
(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,
在△APO与△CEO中,
,
∴△AOP≌△COE,
∴CE=AP=t,
∵△CEH∽△ABC,
∴,
∴EH=,
∵DN==,
∵QM∥DN,
∴△CQM∽△CDN,
∴,即,
∴QM=,
∴DG=﹣=,
∵FQ∥AC,
∴△DFQ∽△DOC,
∴,
∴FQ=,
∴S五边形OECQF=S△OEC+S四边形OCQF=×5×+(+5)•=﹣t2+t+12,
∴S与t的函数关系式为S=﹣t2+t+12;
(3)存在,
∵S△ACD=×6×8=24,
∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,
解得t=,t=0,(不合题意,舍去),
∴t=时,S五边形S五边形OECQF:S△ACD=9:16;
(4)如图3,过D作DM⊥AC于M,DN⊥AC于N,
∵∠POD=∠COD,
∴DM=DN=,
∴ON=OM==,
∵OP•DM=3PD,
∴OP=5﹣t,
∴PM=﹣t,
∵PD2=PM2+DM2,
∴(8﹣t)2=(﹣t)2+()2,
解得:t≈15(不合题意,舍去),t≈2.88,
∴当t=2.88时,OD平分∠COP.
2017年青岛市中考数学试卷和答案: 这是一份2017年青岛市中考数学试卷和答案,共6页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
2015年青岛市中考数学试卷和答案: 这是一份2015年青岛市中考数学试卷和答案,共6页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
2014年青岛市中考数学试卷和答案: 这是一份2014年青岛市中考数学试卷和答案,共8页。试卷主要包含了选择题,填空题,作图题用圆规,解答题等内容,欢迎下载使用。