第一二单元月考试卷(试题)-六年级上册数学苏教版
展开这是一份第一二单元月考试卷(试题)-六年级上册数学苏教版,共14页。试卷主要包含了选择题,填空题,判断题,计算题,解答题等内容,欢迎下载使用。
第一二单元月考试卷-小学六年级上册数学苏教版(含详解)
学校:___________姓名:___________ 班级:___________考号:___________
一、选择题(每题2分,共16分)
1.下面4组数中,不互为倒数的是( )。
A.1和 1 B.和7 C.0.1和10
2.一个长2分米6厘米,宽1分米8厘米,厚6毫米的物体,它可能是( )。
A.手机 B.橡皮 C.数学书
3.观察这是( )个小正方体,从右面看可以看到( )个面.
A.3、2 B.3、3 C.2、3
4.用一根长( )的铁丝正好可以做一个长6cm、宽5cm、高3cm的长方体框架。
A.28cm B.48cm C.56cm
5.计算(+)×28,运用( )计算比较简便.
A.乘法分配律 B.乘法交换律 C.乘法结合律
6.下图是正方体纸盒展开后的平面图,在正方体纸盒上与5号面相对的面是( )。
A.1 B.2 C.3
7.小明将一罐新买的饮料(净含量为650ml)完全浸没在一个装满水的盆中,盆中溢出( )的水。
A.正好650ml B.比650ml多 C.比650ml少
8.人们常说“太阳大、地球小”,其中的“大”和“小”是指物体的( )。
A.体积 B.容积 C.温度
二、填空题(每空1分,共22分)
9.做一个长12dm,宽5dm,高8dm的长方体无盖玻璃鱼缸,至少需要( )dm²玻璃,这个鱼缸最多能盛水( )L。
10.14千克×表示把( )平均分成( )份,取出其中的( )份,每份是( ).
11.3.6米增加它的后是( )米,( )米增加它的后是3.5米。
12.一个分数的分子是互为倒数的两个数的积,分母是最小的质数。这个分数的是( )。
13.650立方厘米=( )立方分米 100立方分米=( )升
升=( )毫升 25分=时
14.一个正方体的底面积是平方米,它的表面积是( )平方米
15.一个长方体的高减少2厘米,就成为一个表面积是150平方厘米的正方体。求原来长方体的体积是( )立方厘米。
16.正方体有( )个面,每个面都是( )形,它们的面积都( );有( )条棱,长度都( );有( )个顶点。
三、判断题(每题1分,共7分)
17.冰箱的数量相当于电视机的,冰箱的数量比电视机少。( )
18.0.5立方米=500立方厘米.( )
19.一根米长的绳子剪去后就全部剪掉了.( )
20.一个长方体,它的长、宽、高都扩大到原来的2倍,它的体积扩大到原来的6倍。( )
21.下图不可以折成一个正方体。( )
22.长方体至少有8条棱一样长. ( )
23.0.3的倒数是3.( )
四、计算题(共15分)
24.直接写得数(每题0.5分,共9分)
×11= ×27= ×8= ×8= ×3=
×2500= 3×= ×6= ×5= ×7=
1.25××8= ×= ×= ×=
7.9×11-7.9= += ×1.8=
25.脱式计算,能简算的要简算。(每题2分,共6分)
五、解答题(每题5分,共40分)
26.一支足球队在36场比赛中胜24场,平2场,输10场,请你用最简分数表示胜的场数、平的场数和负的场数各占总场数的几分之几.
27.一个长40厘米,宽25厘米,高30厘米长方体水槽,里面装了一半的水。
(1)求出这个水槽的容积;
(2)这时水跟水槽接触部分的面积是多少平方厘米?
(3)如果将一个棱长6厘米的正方体铁块放进去,水面会上升多少厘米?
28.一个长方体长为1.5分米,宽为0.5分米,高为1分米,锯三刀之后之后可以锯成6个完全相同的正方体,每个正方体的表面积是多少?这时表面积之和比原来增加多少?
29.食堂原计划购进84袋大米,实际比原计划多购进了,食堂实际比原计划多购进了多少袋大米?实际购进了多少袋?
30.据了解,火车票价是按照“全程票价×”的方法确定的。已知A站与H站之间的总里程数是1500千米,全程票价为600元。下图是A站到各站之间的里程数。
(1)如果从B站上车,E站下车,票价应该是多少元?
(2)王阿姨购买的火车票价是520元。她从A站上车,应该在哪站下车?
31.李明的体重是30千克,他的书包重5千克.儿童的负重最好不要超过体重的,如果长时间背负过重物体,会导致腰痛及腿痛,甚至会妨碍骨骼生长,李明的书包超重吗?(请通过计算说明)
32.长方体体积可以用底面积乘高来计算。猜一猜、上、下底面都是等腰梯形的物体体积,怎么算?先把公式补充完整。再说说理由。
猜测∶V=___________________________
理由∶_____________________________
33.一个长方体容器,从里面量长10厘米,宽9厘米,高16厘米,内装有水,水深11厘米,将一个铁球放入水里,完全浸入水中,水面上升了4厘米,这个铁球的体积是多少立方厘米?
参考答案:
1.A
【详解】A.,所以1和1不互为倒数;
B.=1,所以和7互为倒数;
C.0.1×10=1,所以0.1和10互为倒;
D.×2.5=1,所以和2.5互为倒数。
故答案为:A
2.C
【分析】分米和厘米之间的进率是10,则这个物体长26厘米,宽18厘米,厚6毫米。也就是这个物体是一个略长的,很薄的东西。结合各选项可知,这个物体可能是数学书。
【详解】根据分析可知,一个长2分米6厘米,宽1分米8厘米,厚6毫米的物体,它可能是数学书。
故答案为:C。
【点睛】常见的长度单位有毫米、厘米、分米、米等。1厘米=10毫米,1分米=10厘米,1米=10分米。
3.A
【详解】根据观察规律,里面有一个小正方体,只有在上面看才能看到,所以一共有3个;
能看到的物体,该面应该与视线垂直对应,所以,在右边看小正方体只能看到两个面,即可解答.
故选A
4.C
【分析】根据长方体的特征,长方体有4个长,4个宽,4个高,长方体的框架由这12条棱构成,即可知道求出长方体的棱长总和就是铁丝的长度。
【详解】(6+5+3)×4
=14×4
=56(厘米)
故答案为:C。
【点睛】本题主要考查长方体的特征,利用求棱长总和的方法解决问题。
5.A
【解析】略
6.B
【分析】“z”字两端处的小正方形是正方体的对面。据此,在正方体纸盒上1号面和4号面是相对的面,2号面与5号面是相对的面,3号和6号是相对的面。
【详解】根据正方体展开图的相对面辨别方法,在正方体纸盒上与5号面相对的面是2号面。
故答案为:B
【点睛】本题考查正方体展开图的认识。熟练掌握正方体展开图的相对面辨别方法是解题的关键。
7.B
【分析】根据题意可知,650 mL是这瓶饮料的净含量,所以饮料瓶的体积大于650 mL;然后根据盆里溢出的水等于饮料瓶的体积,可得盆里溢出的水比650mL多。
【详解】根据分析可知:
小明将一罐新买的饮料(净含量为650ml)完全浸没在一个装满水的盆中,盆中溢出比650ml多的水。
故答案为:B
【点睛】本题考查物体体积与容积的区别,物体的体积一般情况下大于它的容积。
8.A
【详解】人们常说“太阳大、地球小”,其中的“大”和“小”是指物体的体积。
故答案为:A。
9. 332 480
【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,本题中需要多少玻璃即是求长方体的表面积注意缺少长×宽一个面;能盛多少水即是求长方体的体积,代入数值计算即可。
【详解】(12×5+12×8+5×8)×2-12×5
=(60+96+40)×2-60
=196×2-60
=392-60
=332(dm2)
12×5×8
=60×8
=480(dm3)
=480(L)
所以至少需要332dm²玻璃,这个鱼缸最多能盛水480L。
【点睛】此题考查长方体表面积、体积的综合应用,需掌握其计算公式,并能灵活运用。
10.14,7,4,8.
【详解】试题分析:表示把一个整体平均分成了7份,取其中的4份,由此进行求解.
解:14千克×表示把 14千克平均分成 7份,取出其中的 4份;
14×=8(千克);
每份是 8千克.
点评:本题考查了分数的意义,和分数乘法的意义.
11. 4.2 3
【分析】(1)的单位“1”是3.6米,根据分数乘法的意义,列式即可;
(2)一个数增加它的是3.6米,这一个数是单位“1”,然后用3.6除以(1+)即可求出这个数。
【详解】(1)3.6×(1+)
=3.6×
=4.2(米)
(2)3.5÷(1+)
=3.5÷
=3(米)
【点睛】本题属于基本的分数乘法应用,只要找到“单位1”,根据数量关系列式子即可。
12.
【分析】根据倒数的定义:乘积是1的两个数互为倒数,一个数只有1和它本身两个因数,这个数叫做质数。最小的质数是2,据此可知这个数是,把这个数看作单位“1”,根据分数乘法的意义,用×即可求出这个分数的是多少。
【详解】互为倒数的两个数的积是1,最小的质数是2,所以这个分数是,
这个分数的是。
【点睛】本题主要考查了倒数的认识以及分数乘法的计算,掌握相应的计算方法是解答本题的关键。
13.0.65;100;
800;
【分析】1立方分米=1000立方厘米;1立方分米=1升;1升=1000毫升;1时=60分,高级单位换算成低级单位,乘进率;低级单位换算成高级单位,除以进率,据此解答。
【详解】650立方厘米=0.65立方分米
100立方分米=100升
×1000=800
升=800毫升
25÷60=
25分=时
【点睛】本题考查单位名数的互换,关键是熟记进率。
14.
【分析】根据正方体表面积公式:棱长×棱长×6=底面积×6,已知一个底面积是,再乘6,就是这个正方体的表面积。
【详解】×6=(平方米)
【点睛】本题考查正方体表面积公式的应用,关键是熟记公式,灵活运用。
15.175
【分析】依据正方体的表面积公式S=6a2,可求出正方体的棱长;棱长加2就是原长方体的高,依据长方体的体积公式:V=abh计算即可。
【详解】150÷6=25(平方厘米)
25÷5=5(厘米)
(5+2)×5×5
=7×5×5
=175(平方厘米)
【点睛】此题关键是先求出正方体的棱长,进而求出长方体的高。
16. 6 正方 相等 12 相等 8
【详解】根据正方体的特征:正方体有6个面,12条棱,8个顶点,正方体的6个面是完全相同的正方形,相对的棱长长度都相等。
17.√
【分析】把电视机的数量看成单位“1”,那么冰箱的数量就是,用1减去就是冰箱的数量比电视机少几分之几。
【详解】1-=
故答案为:√
【点睛】本题中的单位“1”相同,所以直接用电视机的分率减去冰箱的分率即可。
18.×
【详解】略
19.×
【解析】略
20.×
【分析】根据长方体的体积公式进行计算。
【详解】一个长方体,它的长、宽、高都扩大到原来的2倍,它的体积扩大到原来的8倍。所以这句话是错误的。
【点睛】根据长方体的体积公式进行计算,长方形的体积计算公式是长×宽×高,所以它的体积扩大到原来的2×2×2倍。
21.√
【分析】根据正方体的11种展开图的特征即可解答。
【详解】不属于正方体展开图11种类型中的任意一种,无法折成一个正方体。
故答案为:√。
【点睛】本题主要考查正方体的11种展开图的特征,熟记正方体的11种展开图的特征是解决本题的关键。
22.×
【详解】如果在长方体中有两个对面是正方形时,它就有8条棱是一样长的.当超过8条一样长的棱时,就不能具有长方体的特征,即可判断.
23.×
【分析】考察了对倒数的认识,乘积等于1的两个数互为倒数.
【详解】1÷0.3=1÷ =1× = =3
所以0.3的倒数是3。
24.2;6;;;
1000;;;;
;8;;;
79;;1
【详解】略
25.2;3;8
【分析】第一题可利用加法结合律,把同分母进行先运算,可以达到简便;第二题和第三题都可以利用乘法分配律即可达到简便运算。
【详解】
=
=
=1+1
=2;
=
=2+4-3
=6-3
=3;
=
=
=1×8
=8
【点睛】熟练掌握分数加法结合律和分数乘法分配律是解决此题的核心。
26.、、.
【详解】试题分析:根据题意,胜的场数、平的场数和负的场数分别除以36,然后再化成最简分数即可.
解:
24÷36==;
2÷36==;
10÷36==.
答:胜的场数、平的场数和负的场数各占总场数的、、.
点评:关键是先用分数表示出来,然后再化成最简分数.
27.(1)30升
(2)2950平方厘米
(3)0.216厘米
【分析】(1)根据长方体的容积公式:V=abh,把数据代入公式解答。
(2)根据无盖长方体的表面积公式:S=ab+2sh+2bh,把数据代入公式解答。
(3)根据正方体的体积公式:V=a3,求出铁块的体积,然后用铁块的容积除以水槽的底面积即可。
【详解】(1)40×25×30
=1000×30
=30000(立方厘米)
30000立方厘米=30升
答:这个水槽的容积是30升。
(2)30÷2=15(厘米)
40×25+40×15×2+25×15×2
=1000+1200+750
=2950(平方厘米)
答:这时水跟水槽接触部分的面积是2950平方厘米。
(3)6×6×6÷(40×25)
=36×6÷(40×25)
=216÷1000
=0.216(厘米)
答:水面会上升0.216厘米。
【点睛】此题主要考查长方体的体积公式、长方体的表面积公式、正方体的体积公式的灵活运用,关键是熟记公式。
28.1.5平方分米;3.5平方分米
【分析】根据题意可知,锯成的6个正方体它的棱长是0.5分米,根据正方体的表面积公式:棱长×棱长×6,求出正方体的表面积;再用一个正方体的表面积×6,求出锯成6个正方体的表面积,根据长方体表面积公式:(长×宽+长×高+宽×高)×2,求出原来长方体表面积,用6个正方体表面积的和减去原来长方体的表面积,剩下的就是这时表面积之和比原来增加多少。
【详解】0.5×0.5×6
=0.25×6
=1.5(平方分米)
1.5×6-(1.5×0.5+1.5×1+0.5×1)×2
=9-(0.75+1.5+0.5)×2
=9-(2.25+0.5)×2
=9-2.75×2
=9-5.5
=3.5(平方分米)
答:每个正方体的表面积是1.5平方分米,这时的表面积比原来增加3.5平方分米。
【点睛】本题考查立体图形的切割,以及长方体表面积公式、正方体表面积公式的应用;关键是明确锯成的6个正方体的边长等于长方体的宽。
29.24袋;108袋
【分析】(1)把食堂原计划购进袋数看作“1”,多购进大米袋数占原计划购进大米袋数的,根据“1”的量× 列式;
(2)实际购进大米的袋数=原计划购进大米的袋数+实际比原计划多购进大米的袋数。
【详解】84×=24(袋)
答:食堂实际比原计划多购进了24袋大米。
84+24=108(袋)
答:实际购进了108袋。
【点睛】掌握“求一个数几分之几是多少”的计算方法是解答题目的关键。
30.(1)280元
(2)G站
【分析】(1)先计算出B站到E站的路程,再根据实际票价=全程票价×,代入数据计算;
(2)根据实际票价=全程票价×,推算出实际乘车里程数=实际票价÷全程票×总里程数,计算出王阿姨行的路程,再判断她从A站上车,从哪站下车。
【详解】由分析可得:
(1)900-200=700(千米)
600×=280(元)
答:票价应该是280元。
(2)520÷600×1500
=×1500
=1300(千米)
图中,G站是1300千米。
答:应该在G站下车。
【点睛】本题是路程图和行程问题的综合运用,解答本题的关键是灵活运用实际票价=全程票价×这一数量关系。
31.超重
【详解】30× =4.5(千克)
4.5千克<5千克
因此超重
32.见详解
【分析】长方体的体积=长×宽×高,又长×宽是长方体的底面积,由此推知长方体的体积=底面积×高,进而推测出上、下底面都是等腰梯形的物体体积公式;据此解答。
【详解】猜测∶V=Sh
理由∶先求出梯形的面积S=(上底+下底)×高÷2,四棱柱的体积V则为梯形的面积S×棱柱的高h。
【点睛】通过对长方体体积公式的理解,合理推测即可。
33.360立方厘米
【分析】往盛水的长方体容器里放入一个铁球后,水面升高了,升高了的水的体积就是这铁球的体积,升高的部分是一个长10厘米,宽9厘米,高4厘米的长方体,根据长方体的体积计算公式列式解答即可。
【详解】10×9×4
=90×4
=360(立方厘米)
答:这个铁球的体积是360立方厘米。
【点睛】此题主要考查特殊物体体积的计算方法,解答此题关键是将物体放入或取出水中,水面上升或下降的体积就是物体的体积。
相关试卷
这是一份第一二单元月考试卷(试题)苏教版六年级上册数学,共13页。试卷主要包含了选择题,填空题,判断题,计算题,解答题等内容,欢迎下载使用。
这是一份第一二单元月考试卷(试题)苏教版六年级上册数学,共14页。试卷主要包含了选择题,填空题,判断题,计算题,解答题等内容,欢迎下载使用。
这是一份第一二单元月考试卷(试题)苏教版六年级上册数学,共13页。试卷主要包含了选择题,填空题,判断题,计算题,解答题等内容,欢迎下载使用。