- 奥数二年级上册 第11讲:观察物体 教案 教案 0 次下载
- 奥数二年级上册 第12讲:简单推理 教案 教案 0 次下载
- 奥数二年级上册 第13讲:趣摸彩球 教案 教案 0 次下载
- 奥数二年级上册 第14讲:分一分除法 教案 教案 0 次下载
- 奥数二年级上册 第16讲:生活中的数学 教案 教案 0 次下载
奥数二年级上册 第15讲:单数和双数 教案
展开( 二年级 ) 备课教员:××× | |||||||||||||||||||||||||||
第十五讲 单数和双数 | |||||||||||||||||||||||||||
一、教学目标: | 1. 认识单数和双数。 2. 初步了解单数和双数之间的关系,能够区别单数和双数。 3. 能够正确判断两数之和、两数之差是单数还是双数,并能 够利用这个特点解决简单的实际问题。
题的能力。 | ||||||||||||||||||||||||||
二、教学重点: | 认识单数和双数,能够区别单数和双数。 | ||||||||||||||||||||||||||
三、教学难点: | 能够正确判断两数之和、两数之差是单数还是双数,并能够利用这个特点解决简单的实际问题。 | ||||||||||||||||||||||||||
四、教学准备: | PPT | ||||||||||||||||||||||||||
五、教学过程: 第一课时(50分钟) 一、导入(5分) 师:同学们,上课之前老师想和大家玩一个游戏,你们想不想玩? 生:想! 师:先分好组,一会儿老师会播放音乐,大家随着音乐一起转圈,音乐一停, 你就要找一个朋友,然后站到老师这边来,听明白了吗? 生:明白了。 (播放音乐,学生转圈) ①组 师:这几组小朋友都找到朋友了,可以说他们是成双成对的。你们知道像这样 的数字2、4、6叫什么吗? 生:双数。 师:真不错! ②组 师:这组有一个小朋友没找到,那么他就变得孤单了。那你知道数字1是什么 数吗? 生:单数。 师:你真厉害。那么今天这节课老师就要带领大家更深入地了解单数和双数。 【板书课题:单数和双数】 | |||||||||||||||||||||||||||
二、探索发现授课(40分) (一)例题1:(13分) 有一筐苹果,2个2个地拿,最后正好拿完。问:这筐苹果的个数是单数还是双数? 师:同学们,我们已经学过自然数,你能说说自然数有哪些吗? 生:1、2、3、4……都是自然数。 师:你们真厉害!如果老师想把这些自然数分成两类,你知道怎么分吗? 生:可以分成单数和双数。 师:单数有哪些? 生:1、3、5、7、9…(教师板书) 师:那双数有哪些? 生:2、4、6、8…(教师板书) 师:我们可以分成这样的两大类,请你仔细观察,你能发现它们哪里不同吗? 生:我发现双数都是2个2个的。 师:那我们一起来看看这些双数,如果我们2个2个地分,能不能正好分完? 生:能正好分完。 师:那么能够分完的这个数我们把它称作双数。也就是说,在自然数范围内, 如果2个2个地分,正好分完,那么这个数就是双数,记住了吗? 生:记住了。 师:那我们一起来看看单数,如果还是2个2个地分,能分完吗? 生:不能。还会剩下1个。 师:非常棒!在自然数范围内,如果2个2个地分,最后会剩下1个,那么这 个数就是单数。 生:哇……好神奇! 师:那这道题中告诉了我们什么数学信息? 生:有一筐苹果,2个2个地拿,正好拿完。 师:那你说这筐苹果的个数是单数还是双数? 生:双数。 师:为什么呢? 生:刚刚老师说了,在自然数范围内,如果2个2个地分,正好分完,那么这 个数就是双数。 师:你们真是厉害! 板书:1、3、5、7、9…单数:2个2个地分,还剩1个。 2、4、6、8…双数:2个2个地分,正好分完。 答:这筐苹果的个数是双数。 练习1:(6分) 有一筐苹果,2个2个地拿,最后还剩下1个,问这筐苹果的个数是单数还是双数? 分析: 在自然数范围内,如果2个2个地分,最后会剩下1个,那么这个数就是单数。因此本题中的苹果2个2个地拿,还剩1个,说明这筐苹果的个数是单数。 板书:1、3、5、7、9…单数:2个2个地分,还剩1个。 2、4、6、8…双数:2个2个地分,正好分完。 答:这筐苹果的个数是单数。 (二)例题2:(13分) 晚上米德在灯下做作业的时候,突然停电了,米德去拉了两下开关。博士回来后又拉了五下开关。等来电以后,米德房间的灯是亮还是不亮的? 师:米德在做作业时,突然停电了,这时候开关处于什么状态? 生:开关是开着的。 师:很好,这时候开关处于“开”的状态。那米德去拉了两下开关,拉第一下 时,开关处于什么状态? 生:变成了“关”。 师:再拉一下呢? 生:又变成了“开”。 师:也就是说,本来开关处于“开”,拉第一下时处于“关”,拉第二下时处 于“开”,那博士回来后,拉了第三下,开关变成了什么状态? 生:又变成了“关”。 生:“开”。 师:真棒!同学们,你们发现了没有,拉的次数和开关的状态有什么关系? 生:我发现拉一下和拉三下都是关着的,拉二下和四下都是开着的。 师:你总结的真完整。也就是说,拉单数下的时候,开关处于“关”,拉双数 下的时候,开关处于“开”。这么这道题中,一共拉了几下? 生:一共拉了7下。 师:你怎么知道的? 生:因为米德拉了2下,博士拉了5下,2+5=7,所以一共拉了7下。 师:真不错,那按照我们刚刚的结论,拉完7下之后,开关处于什么状态? 生:因为7是单数,所以拉单数下,开关处于“关”的状态。 师:非常棒!那等来电以后,米德房间的灯是亮还是不亮的? 生:不亮的。 板书:
拉单数下——“关”;拉双数下——“开” 2+5=7,7是单数——“关” 答:等来电以后,米德房间的灯是不亮的。 练习2:(8分) 傍晚做作业的时候,本来拉一次开关,灯就应该亮的。但是卡尔连拉了5次开关,请你们说说这时灯是亮的还是不亮的? 分析: 拉第一次时灯亮,拉第二次时灯不亮,拉第三次时灯亮,拉第四次时灯不亮。我们可以发现,拉单数次时灯亮,拉双数次时灯不亮。卡尔连拉了5次,5是单数,拉单数次时,灯亮。 板书:
拉单数次——“亮”;拉双数次——“不亮” 5是单数——“亮” 答:卡尔连拉了5次开关,这时灯是亮的。 三、小结:(5分) 1. 在自然数范围内,如果2个2个地分,正好分完,这个数就是双数;在自然 数范围内,如果2个2个地分,最后会剩下1个,这个数就是单数。
情况具体分析。
| |||||||||||||||||||||||||||
第二课时(50分) 一、复习导入(3分) 师:上节课我们不仅仅认识了单数和双数,我们还发现了它们的不同点,谁还 记得双数有什么特点? 生:2个2个地分,正好分完,这个数就是双数。 师:还有个大前提是什么? 生:在自然数范围内。 师:非常好,谁还能完整地说一说? 生:在自然数范围内,2个2个地分,正好分完,这个数就是双数。 师:你的记忆力真不错,那单数呢? 生:在自然数范围内,如果2个2个地分,最后会剩下1个,这个数就是单数。 师:你也很厉害。在解决实际问题的时候,我们一定要区别单数和双数时的不 同情况,今天这节课,我们要一起来解决更有挑战性的实际问题,准备好 了吗? 生:准备好了! (出示PPT) | |||||||||||||||||||||||||||
二、探索发现授课(42分) (一)例题3:(13分) 一辆汽车从南站开到北站为一趟。若这辆车从南站出发,开了5趟之后,这辆车在南站还是北站? 师:从题中你知道了什么? 生:一辆汽车从南站开到北站为一趟。 师:很好!这是我们知道的数学信息,那问题求什么? 生:若这辆车从南站出发,开了5趟之后,这辆车在南站还是北站? 师:那请同学们思考一下,开1趟之后,这辆车在哪儿? 生:在北站。 师:你是怎么想的? 生:题目告诉我们车从南站出发,南站到北站为一趟,所以1趟之后,到了北 站。 师:那第2趟之后到哪儿了? 生:第2趟应该是从北站到南站,所以到了南站。 师:那你能说说第3趟车在哪? 生1:第3趟又从南站到北站,车到北站。 生2:第4趟从北站到南站,车在南站。 师:同学们,你们发现了吗?开的趟数和车的位置有什么关系? 生:开1趟时,车在北站;开2趟时,车在南站;开3趟时,车在北站;开4 趟时,车在南站。 师:你说得真详细。我们发现车子开单数趟时,车在北站;开双数趟时,车在 南站。那5趟之后车在哪站? 生:题目说开了5趟,5是单数,所以开了5趟之后,车在北站。 板书:1、3、5…单数趟:从南站到北站,在北站 2、4、6…双数趟:从北站到南站,在南站 5是单数——从南站到北站,在北站 答:若这辆车从南站出发,开了5趟之后,这辆车在北站。 练习3:(7分) 博士乘地铁从体育馆到上海火车站,中途睡着了,地铁开了3次(从起点开到终点是一次),博士正好醒来,这时他在哪站? 分析: 地铁从体育馆到上海火车站,开第1次后,博士在上海火车站;接着地铁又从上海火车站开回体育馆,开第2次后,博士在体育馆;第3次地铁从体育馆开到上海火车站,所以博士醒来后,他在上海火车站。 板书:1趟——体育馆到上海火车站——上海火车站 2趟——上海火车站到体育馆——体育馆 3趟——体育馆到上海火车站——上海火车站 答:地铁开了3次,博士正好醒来,这时他在上海火车站。 (二)例题4:(13分) 2+3+4+5+6的和是单数还是双数? 师:这道题,你是怎么思考的? 生:我算出来2+3+4+5+6=20,结果是双数。 师:你是怎么判断它是双数的? 生:20属于自然数,2个2个地分,正好分完,所以它是双数。 师:真不错,除了用这种直接计算出得数的方法,你还有其他方法吗? 生:我是这样想的,2+3=5,5是单数,5+4=9,9是单数,9+5=14,14是双数, 14+6=20,20是双数。 (教师板书算式)2+3=5、5+4=9、9+5=14、14+6=20 师:你是利用两两相加去思考的,那我们一起来逐一看看这些算式,你发现了 什么? 生:我发现第一个算式和第二个算式都是单数加双数,最后的结果是单数。 (教师板书:单数+双数=单数) 师:很不错!除了这个,看看第三个算式,你还发现了什么? 生:第三个算式是单数加单数,结果等于双数。 (教师板书:单数+单数=双数) 师:再看看第四个算式,你发现了什么? 生:第四个算式是双数加双数,结果还是双数。 (教师板书:双数+双数=双数) 师:你真厉害!既然我们找到了这些自然数的相加规律,那么我们再看看这道 题目,不用计算,你能不能知道最后的结果是单数还是双数? 生:能。双数相加还是双数,所以2+4+6还是双数。 师:那3+5呢? 生:单数加单数也是双数。 师:那最后双数加双数,结果还是双数。 板书:单数+双数=单数 单数+单数=双数 双数+双数=双数 答:2+3+4+5+6的和是双数。 练习4:(7分) 14+6+16+4+13的和是单数还是双数? 分析: 双数相加还是双数,所以14+6+16+4结果还是双数,然后双数再加上单数,最后的结果是单数。
板书:14+6+16+4 + 13 = 单数 双数 + 单数= 单数 答:14+6+16+4+13的和是单数。 (三)例题5(选讲): 有一个电影院的座位号码是单号与单号相邻,双号与双号相邻。一个人拿了2张相邻单号的电影票,若两个号码相加之和等于8,问这两个座位分别是几号? 师:从题目中我们知道哪些关键信息? 生:电影院的座位号是单号和单号相邻的,一个人拿了两张单号的电影票,两 个号码之和等于8。 师:想一想,我们知道的单数号有哪些? 生:1、3、5、7。 师:那这些数中,哪两个相邻单数相加等于8。 生:3和5相加等于8。 师:你真厉害,一眼就看出正确答案了。这道题中需不需要考虑到双数? 生:不需要,是无关信息。 师:很棒!我们要善于利用题目告知我们的有用信息去解决问题。 板书:单数:1、3、5、7 3+5=8 答:这两个座位号分别是3号和5号。 练习5: 某城市的店铺号是单号与单号相邻,双号与双号相邻。现有两家相邻的店铺号是双号,若这两家店铺的店铺号之和等于14,问这两家的店铺号分别是多少号? 分析: 我们已知的双数有2、4、6、8、10,题目告知两家店铺之和等于14,6+8=14,所以这两家店铺号分别是6号和8号。 板书:双数:2、4、6、8、10 6+8=14 答:这两家店铺号分别是6号和8号。 三、总结:(5分) 单数、双数相加减有如下特点: 1. 双数+双数=(双数) 双数-双数=(双数) 2. 单数+单数=(双数) 单数-单数=(双数) 3. 双数+单数=(单数) 双数-单数=(单数) 4. 单数+双数=(单数) 单数-双数=(单数) 四、随堂练习: 1. 一堆梨,4个4个地数,最后还剩下一个梨,这堆梨的个数是单数还是双数? 板书: 4个4个地分 一堆梨——————剩下1个——单数 答:这堆梨的个数是单数。
了4下开关。当来电的时候,灯泡是亮着还是不亮的? 板书:
单数次——“关”;双数次——“开” 答:当来电的时候,灯泡是不亮的。
那么所送卡片的总数是单数还是双数? 板书:
6+6+6+6+6+6+6,双数相加,结果还是双数。 答:所送卡片的总数是双数。
4. 2+6+8+14+15的和是单数还是双数? 板书:2+6+8+14 + 15 = 单数 双数 + 单数 答:2+6+8+14+15的和是单数。
5. 阿派去河边钓了10条鱼,他准备把这10条鱼放在两个鱼缸里慢慢吃。 (1)如果每个鱼缸的鱼都放单数条,能做到吗?如果能怎么放? (2)如果其中一个鱼缸的鱼是双数条,另一个鱼缸里的鱼是单数条,能做到
吗?如果能怎么放? 板书:单数:1、3、5、7、9 (1) 都是单数且满足相加是10:1+9=10(条) 3+7=10(条) 5+5=10(条) (2) 单数+双数=单数≠10 答:(1)如果每个鱼缸都放单数条,能做到,分别是1条和9条或者3条和7条或者两个鱼缸各5条。 (2)如果其中一个鱼缸的鱼是双数条,另一个是单数条,不能做到。 | |||||||||||||||||||||||||||
家庭作业 |
| ||||||||||||||||||||||||||
主管评价 |
| ||||||||||||||||||||||||||
主管评分 |
| ||||||||||||||||||||||||||
课后反思 (不少于60字) | 整体效果 |
| |||||||||||||||||||||||||
设计不足之处 |
| ||||||||||||||||||||||||||
设计优秀之处 |
| ||||||||||||||||||||||||||
奥数一年级下册 第12讲:单数双数的认识 教案: 这是一份奥数一年级下册 第12讲:单数双数的认识 教案,共10页。
奥数二年级上册寒假课程第8讲《连接条件和问题》教案: 这是一份奥数二年级上册寒假课程第8讲《连接条件和问题》教案,共8页。教案主要包含了教学目标,教学重点,教学难点,教学准备,教学过程等内容,欢迎下载使用。
奥数二年级上册寒假课程第7讲《认识简单数列》教案: 这是一份奥数二年级上册寒假课程第7讲《认识简单数列》教案,共5页。教案主要包含了教学目标,教学重点,教学难点,教学准备,教学过程等内容,欢迎下载使用。