终身会员
搜索
    上传资料 赚现金

    25_专题八84直线、平面垂直的判定和性质(习题+十年高考)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      1_8.4 直线、平面垂直的判定和性质习题.docx
    • 1_8.4 直线、平面垂直的判定和性质(十年高考).docx
    1_8.4 直线、平面垂直的判定和性质习题第1页
    1_8.4 直线、平面垂直的判定和性质习题第2页
    1_8.4 直线、平面垂直的判定和性质习题第3页
    1_8.4 直线、平面垂直的判定和性质(十年高考)第1页
    1_8.4 直线、平面垂直的判定和性质(十年高考)第2页
    1_8.4 直线、平面垂直的判定和性质(十年高考)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    25_专题八84直线、平面垂直的判定和性质(习题+十年高考)

    展开

    这是一份25_专题八84直线、平面垂直的判定和性质(习题+十年高考),文件包含1_84直线平面垂直的判定和性质习题docx、1_84直线平面垂直的判定和性质十年高考docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。


    8.4 直线、平面垂直的判定和性质
    考点一 直线、平面垂直的判定和性质
    1.(2015陕西,18,12分)如图1,在直角梯形ABCD中,AD∥BC,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1-BCDE.

    (1)证明:CD⊥平面A1OC;
    (2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为362,求a的值.
    解析 (1)证明:在题图1中,
    因为AB=BC=12AD=a,E是AD的中点,
    ∠BAD=π2,所以BE⊥AC.
    即在题图2中,BE⊥A1O,BE⊥OC,
    又A1O∩OC=O,
    从而BE⊥平面A1OC,
    又CD∥BE,
    所以CD⊥平面A1OC.
    (2)由已知,平面A1BE⊥平面BCDE,
    且平面A1BE∩平面BCDE=BE,
    又由(1)知,A1O⊥BE,
    所以A1O⊥平面BCDE,
    即A1O是四棱锥A1-BCDE的高.
    由题图1知,A1O=22AB=22a,平行四边形BCDE的面积
    S=BC·AB=a2.
    从而四棱锥A1-BCDE的体积为
    V=13×S×A1O=13×a2×22a=26a3,
    由26a3=362,得a=6.
    评析 本题首先借“折叠”问题考查空间想象能力,同时考查线面垂直的判定及面面垂直性质的应用.
    2.(2015福建,20,12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.
    (1)若D为线段AC的中点,求证:AC⊥平面PDO;
    (2)求三棱锥P-ABC体积的最大值;
    (3)若BC=2,点E在线段PB上,求CE+OE的最小值.

    解析 (1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.
    又PO垂直于圆O所在的平面,
    所以PO⊥AC.
    因为DO∩PO=O,
    所以AC⊥平面PDO.
    (2)因为点C在圆O上,
    所以当CO⊥AB时,C到AB的距离最大,且最大值为1.
    又AB=2,所以△ABC面积的最大值为12×2×1=1.
    又因为三棱锥P-ABC的高PO=1,
    故三棱锥P-ABC体积的最大值为13×1×1=13.
    (3)解法一:在△POB中,PO=OB=1,∠POB=90°,
    所以PB=12+12=2.同理,PC=2,所以PB=PC=BC.
    在三棱锥P-ABC中,将侧面BCP绕PB所在直线旋转至平面BC'P,使之与平面ABP共面,如图所示.

    当O,E,C'共线时,CE+OE取得最小值.
    又因为OP=OB,C'P=C'B,所以OC'垂直平分PB,
    即E为PB中点.从而OC'=OE+EC'=22+62=2+62,
    亦即CE+OE的最小值为2+62.
    解法二:在△POB中,PO=OB=1,∠POB=90°,
    所以∠OPB=45°,PB=12+12=2.同理PC=2.
    所以PB=PC=BC,所以∠CPB=60°.
    在三棱锥P-ABC中,将侧面BCP绕PB所在直线旋转至平面BC'P,使之与平面ABP共面,如图所示.
    当O,E,C'共线时,CE+OE取得最小值.
    所以在△OC'P中,由余弦定理得:
    OC'2=1+2-2×1×2×cos(45°+60°)
    =1+2-2222×12−22×32=2+3.
    从而OC'=2+3=2+62.
    所以CE+OE的最小值为22+62.
    评析 本题主要考查直线与平面的位置关系、锥体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.
    3.(2014福建文,19,12分)如图,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.
    (1)求证:CD⊥平面ABD;
    (2)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积.

    解析 (1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD.
    又∵CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,
    ∴CD⊥平面ABD.
    (2)解法一:由AB⊥平面BCD,得AB⊥BD.
    ∵AB=BD=1,
    ∴S△ABD=12.
    ∵M是AD的中点,
    ∴S△ABM=12S△ABD=14.
    由(1)知,CD⊥平面ABD,
    ∴三棱锥C-ABM的高h=CD=1,
    因此VA-MBC=VC-ABM=13S△ABM·h=112.
    解法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,
    又平面ABD∩平面BCD=BD,
    如图,过点M作MN⊥BD交BD于点N,

    则MN⊥平面BCD,且MN=12AB=12,
    又CD⊥BD,BD=CD=1,
    ∴S△BCD=12.
    ∴三棱锥A-MBC的体积VA-MBC=VA-BCD-VM-BCD
    =13AB·S△BCD-13MN·S△BCD=112.
    4.(2014山东文,18,12分)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.
    (1)求证:AP∥平面BEF;
    (2)求证:BE⊥平面PAC.

    证明 (1)设AC∩BE=O,连接OF,EC.

    由于E为AD的中点,
    AB=BC=12AD,AD∥BC,
    所以AE∥BC,AE=AB=BC,
    因此四边形ABCE为菱形,
    所以O为AC的中点.
    又F为PC的中点,
    因此在△PAC中,
    可得AP∥OF.
    又OF⊂平面BEF,AP⊄平面BEF,
    所以AP∥平面BEF.
    (2)由题意知ED∥BC,ED=BC,
    所以四边形BCDE为平行四边形,
    因此BE∥CD.
    又AP⊥平面PCD,CD⊂平面PCD,
    所以AP⊥CD,因此AP⊥BE.
    因为四边形ABCE为菱形,
    所以BE⊥AC.
    又AP∩AC=A,AP,AC⊂平面PAC,
    所以BE⊥平面PAC.
    5.(2014广东文,18,13分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2.作如图2折叠:折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P在线段AD上的点记为M,并且MF⊥CF.
    (1)证明:CF⊥平面MDF;
    (2)求三棱锥M-CDE的体积.

    解析 (1)证明:∵PD⊥平面ABCD,
    AD⊂平面ABCD,∴PD⊥AD.
    ∵四边形ABCD是矩形,∴AD⊥DC.
    又∵PD∩DC=D,∴AD⊥平面PCD.
    ∵CF⊂平面PCD,∴AD⊥CF.
    又∵MF⊥CF,MF∩AD=M,
    ∴CF⊥平面MDF.
    (2)由(1)知CF⊥DF,PD⊥DC,
    在△PCD中,DC2=CF·PC.
    ∴CF=CD2PC=12.
    又∵EF∥DC,
    ∴PCPD=FCED⇒ED=PD·FCPC=3×122=34.
    ∴PE=ME=3-34=334,
    ∴S△CDE=12DC·ED=12×1×34=38.
    在Rt△MDE中,MD=ME2−ED2=62,
    ∴VM-CDE=13S△CDE·MD=13×38×62=216.
    6.(2013广东文,18,14分)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G.将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=22.

    图1

    图2

    (1)证明:DE∥平面BCF;
    (2)证明:CF⊥平面ABF;
    (3)当AD=23时,求三棱锥F-DEG的体积VF-DEG.
    解析 (1)证明:在等边三角形ABC中,AD=AE,∴ADDB=AEEC,在折叠后的三棱锥A-BCF中也成立,∴DE∥BC,∵DE⊄平面BCF,BC⊂平面BCF,∴DE∥平面BCF.
    (2)证明:在等边三角形ABC中,F是BC的中点,
    ∴AF⊥BC,BF=CF=12.
    ∵在三棱锥A-BCF中,BC=22,
    ∴BC2=BF2+CF2,∴CF⊥BF.
    ∵BF∩AF=F,∴CF⊥平面ABF.
    (3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.
    ∴VF-DEG=VE-DFG=13·12·DG·FG·GE=13·12·13·13·32·13=3324.
    评析 本题考查线面平行、线面垂直的证明以及空间几何体体积的计算,考查立体几何中翻折问题以及学生的空间想象能力和逻辑推理论证能力.抓住翻折过程中的不变量是解决这类问题的关键,第(3)问的关键在于对几何体的转化.
    7.(2012北京文,16,14分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
    (1)求证:DE∥平面A1CB;
    (2)求证:A1F⊥BE;
    (3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

    解析 (1)证明:因为D,E分别为AC,AB的中点,
    所以DE∥BC.
    又因为DE⊄平面A1CB,
    所以DE∥平面A1CB.
    (2)证明:由已知得AC⊥BC且DE∥BC,
    所以DE⊥AC.
    所以DE⊥A1D,DE⊥CD.
    因为A1D∩CD=D,所以DE⊥平面A1DC.
    而A1F⊂平面A1DC,
    所以DE⊥A1F.
    又因为A1F⊥CD,CD∩DE=D,
    所以A1F⊥平面BCDE.
    所以A1F⊥BE.
    (3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:
    如图,分别取A1C,A1B的中点P,Q,连接PQ,则PQ∥BC.

    又因为DE∥BC,
    所以DE∥PQ.
    所以平面DEQ即为平面DEP.
    由(2)知,DE⊥平面A1DC,
    所以DE⊥A1C.
    又因为P是等腰三角形DA1C底边A1C的中点,
    所以A1C⊥DP.
    所以A1C⊥平面DEP.
    即A1C⊥平面DEQ.
    故线段A1B上存在点Q,使得A1C⊥平面DEQ.
    评析 本题的前两问属容易题,第(3)问是创新式问法,可以先猜后证,此题对于知识掌握不牢靠的学生而言,可能不能顺利解答.
    8.(2019课标Ⅲ文,19,12分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.
    (1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
    (2)求图2中的四边形ACGD的面积.

    解析 本题考查了线面、面面垂直问题,通过翻折、平面与平面垂直的证明考查了空间想象能力和推理论证能力,考查了直观想象的核心素养.
    (1)由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.
    由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.
    又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.
    (2)取CG的中点M,连接EM,DM.

    因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.
    由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.
    因此DM⊥CG.
    在Rt△DEM中,DE=1,EM=3,故DM=2.
    所以四边形ACGD的面积为4.
    思路分析 (1)翻折问题一定要注意翻折前后位置的变化,特别是平行、垂直的变化.由矩形、直角三角形中的垂直关系,利用线面垂直、面面垂直的判定定理可证两平面垂直;而由平行公理和平面的基本性质不难证明四点共面.(2)根据菱形的特征结合(1)的结论找到菱形BCGE的边CG上的高求解.
    解题关键 抓住翻折前后的垂直关系,灵活转化线线垂直、线面垂直和面面垂直,题中构造侧棱的特殊“直截面”△DEM,是本题求解的关键和难点.
    考点二 平面与平面垂直的判定和性质
    1.(2022全国乙,理7,文9,5分)在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则(  )
    A.平面B1EF⊥平面BDD1    
    B.平面B1EF⊥平面A1BD
    C.平面B1EF∥平面A1AC    
    D.平面B1EF∥平面A1C1D
    答案 A 如图所示,

    在正方体ABCD-A1B1C1D1中,AC⊥BD,EF∥AC,∴EF⊥BD,又D1D⊥平面ABCD,EF⊂平面ABCD,∴D1D⊥EF,又D1D∩BD=D,∴EF⊥平面BDD1,又EF⊂平面B1EF,∴平面B1EF⊥平面BDD1,故选A.
    2.(2021全国乙文,18,12分)如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.
    (1)证明:平面PAM⊥平面PBD;
    (2)若PD=DC=1,求四棱锥P-ABCD的体积.

    解析 (1)证明:由于PD⊥平面ABCD,AM⊂平面ABCD,则PD⊥AM,又PB⊥AM,PB∩PD=P,PB,PD⊂平面PBD,所以AM⊥平面PBD,因为AM⊂平面PAM,所以平面PAM⊥平面PBD.
    (2)由(1)知AM⊥平面PBD,因为BD⊂平面PBD,所以AM⊥BD,所以∠MAB+∠ABD=90°,因为四边形ABCD为矩形,所以∠DAB=∠ABM,所以∠MAB+∠AMB=90°,所以∠ABD=∠AMB,则△DAB∽△ABM,则DAAB=ABBM,又AB=DC=1,M为BC的中点,∴AD=2,
    ∴S矩形ABCD=AB·AD=2,
    ∴V四棱锥P-ABCD=13S矩形ABCD·PD=13×2×1=23.
    名师点拨:本题以学生熟悉的四棱锥为载体,充分考查了学生的空间想象能力和逻辑推理能力,要求学生熟练掌握空间几何体中垂直的证明方法,在计算中体现空间和平面之间的转化思想,尤其是基本图形的运算.
    3.(2022全国乙文,18,12分)如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.
    (1)证明:平面BED⊥平面ACD;
    (2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F-ABC的体积.

    解析 (1)证明:∵AD=CD,∠ADB=∠BDC,BD=BD,
    ∴△ADB≌△CDB,∴AB=BC,
    又E为AC的中点,∴BE⊥AC,
    在△ADC中,AD=CD,E为AC的中点,∴DE⊥AC,
    又DE⊂平面BED,BE⊂平面BED,DE∩BE=E,
    ∴AC⊥平面BED,
    ∵AC⊂平面ACD,∴平面BED⊥平面ACD.
    (2)由(1)可知AB=BC且∠ACB=60°,
    ∴△ABC为等边三角形,∴AC=AB=2.
    又AD=DC,AD⊥CD,∴AD=DC=2,
    连接EF,由(1)知AC⊥平面BED,
    ∵EF⊂平面BED,∴AC⊥EF,
    ∴S△ACF=12AC×EF=EF,
    在Rt△ADC中,可得DE=1,在△ABC中,可得BE=3,
    又BD=2,∴BD2=DE2+BE2,
    ∴△BED为直角三角形,且∠EBD=30°,
    ∴EF的最小值为Rt△BED斜边上的高h,
    且h=BEsin∠EBD=32,
    ∵AC⊥平面BEF,
    ∴VF-ABC=13S△BEF×AC
    =13×12BF·ℎ×AC
    =13×12BEcos30°·ℎ×AC
    =13×12×3×32×32×2
    =34.
    4.(2022全国乙理,18,12分)如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.
    (1)证明:平面BED⊥平面ACD;
    (2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.

    解析 (1)证明:因为AD=CD,E为AC的中点,所以DE⊥AC.
    因为∠ADB=∠BDC,AD=CD,BD=BD,所以△ADB≌△CDB,所以AB=CB,又E为AC的中点,
    所以BE⊥AC.
    又DE,BE⊂平面BED,且DE∩BE=E,所以AC⊥平面BED,又AC⊂平面ACD,所以平面ACD⊥平面BED.
    (2)由题意及(1)知AB=BC=2,又∠ACB=60°,所以AC=2,BE=3.
    因为AD⊥DC,E为AC的中点,所以DE=1.
    所以DE2+BE2=BD2,则DE⊥BE.
    连接EF,因为AC⊥平面BED,EF⊂平面BED,
    所以AC⊥EF,所以S△AFC=12AC·EF=EF.
    当EF⊥BD时,EF最小,即△AFC的面积最小,此时EF=32.
    如图,以E为坐标原点,EA,EB,ED的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系E-xyz,则C(-1,0,0),A(1,0,0),B(0,3,0),D(0,0,1),F0,34,34,
    所以AD=(-1,0,1),BD=(0,-3,1),CF=1,34,34.
    设平面ABD的法向量为n=(x,y,z),
    则AD·n=0,BD·n=0,即−x+z=0,−3y+z=0,令y=1,得n=(3,1,3).
    设CF与平面ABD所成的角为θ,
    则sin θ=|cos|=|n·CF||n||CF|=437,
    所以CF与平面ABD所成的角的正弦值为437.


    5.(2018课标Ⅰ文,18,12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.
    (1)证明:平面ACD⊥平面ABC;
    (2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.

    解析 (1)证明:由已知可得,∠BAC=90°,BA⊥AC.
    又BA⊥AD,所以AB⊥平面ACD.
    又AB⊂平面ABC,
    所以平面ACD⊥平面ABC.
    (2)由已知可得,DC=CM=AB=3,DA=32.
    又BP=DQ=23DA,所以BP=22.
    作QE⊥AC,垂足为E,则QE=13DC,QE∥DC.
    由已知及(1)可得DC⊥平面ABC,
    所以QE⊥平面ABC,QE=1.
    因此,三棱锥Q-ABP的体积为
    VQ-ABP=13·QE·S△ABP=13×1×12×3×22sin 45°=1.

    规律总结 证明空间线面位置关系的一般步骤:
    (1)审清题意:分析条件,挖掘题目中平行与垂直的关系;
    (2)明确方向:确定问题的方向,选择证明平行或垂直的方法,必要时添加辅助线;
    (3)给出证明:利用平行、垂直关系的判定或性质给出问题的证明;
    (4)反思回顾:查看关键点、易漏点,检查使用定理时定理成立的条件是否遗漏,符号表达是否准确.
    解题关键 (1)利用平行关系将∠ACM=90°转化为∠BAC=90°是求证第(1)问的关键;
    (2)利用翻折的性质将∠ACM=90°转化为∠ACD=90°,进而利用面面垂直的性质定理及线面垂直的性质定理得出三棱锥Q-ABP的高是求解第(2)问的关键.
    6.(2018北京文,18,14分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.
    (1)求证:PE⊥BC;
    (2)求证:平面PAB⊥平面PCD;
    (3)求证:EF∥平面PCD.

    证明 (1)因为PA=PD,E为AD的中点,
    所以PE⊥AD.
    因为底面ABCD为矩形,
    所以BC∥AD.
    所以PE⊥BC.
    (2)因为底面ABCD为矩形,
    所以AB⊥AD.
    又因为平面PAD⊥平面ABCD,
    所以AB⊥平面PAD.
    所以AB⊥PD.
    又因为PA⊥PD,
    所以PD⊥平面PAB.
    所以平面PAB⊥平面PCD.
    (3)取PC中点G,连接FG,DG.

    因为F,G分别为PB,PC的中点,
    所以FG∥BC,FG=12BC.
    因为ABCD为矩形,且E为AD的中点,
    所以DE∥BC,DE=12BC.
    所以DE∥FG,DE=FG.
    所以四边形DEFG为平行四边形.
    所以EF∥DG.
    又因为EF⊄平面PCD,DG⊂平面PCD,
    所以EF∥平面PCD.
    7.(2017课标Ⅲ文,19,12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD.
    (1)证明:AC⊥BD;
    (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

    解析 (1)证明:取AC的中点O,连接DO,BO.
    因为AD=CD,所以AC⊥DO.
    又由于△ABC是正三角形,所以AC⊥BO.
    因为DO∩BO=O,
    所以AC⊥平面DOB,
    因为BD⊂平面DOB,
    所以AC⊥BD.
    (2)连接EO.
    由(1)及题设知∠ADC=90°,
    所以DO=AO.
    在Rt△AOB中,BO2+AO2=AB2.
    又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,
    故∠DOB=90°.
    由题设知△AEC为直角三角形,
    所以EO=12AC.
    又△ABC是正三角形,且AB=BD,
    所以EO=12BD.
    故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的12,四面体ABCE的体积为四面体ABCD的体积的12,即四面体ABCE与四面体ACDE的体积之比为1∶1.
    8.(2016江苏,16,14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:
    (1)直线DE∥平面A1C1F;
    (2)平面B1DE⊥平面A1C1F.

    证明 (1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.
    在△ABC中,因为D,E分别为AB,BC的中点,
    所以DE∥AC,于是DE∥A1C1.
    又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,
    所以直线DE∥平面A1C1F.
    (2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.
    因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.
    又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,
    所以A1C1⊥平面ABB1A1.
    因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.
    又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,
    所以B1D⊥平面A1C1F.
    因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.
    评析 本题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.
    9.(2015课标Ⅰ文,18,12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.
    (1)证明:平面AEC⊥平面BED;
    (2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.

    解析 (1)因为四边形ABCD为菱形,所以AC⊥BD.
    因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.
    又AC⊂平面AEC,所以平面AEC⊥平面BED.(5分)
    (2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.
    因为AE⊥EC,所以在Rt△AEC中,可得EG=32x.
    由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.
    由已知得,三棱锥E-ACD的体积VE-ACD=13×12AC·GD·BE=624x3=63.故x=2.(9分)
    从而可得AE=EC=ED=6.
    所以△EAC的面积为3,△EAD的面积与△ECD的面积均为5.
    故三棱锥E-ACD的侧面积为3+25.(12分)

    相关试卷

    24_专题八83直线、平面平行的判定和性质(习题+十年高考):

    这是一份24_专题八83直线、平面平行的判定和性质(习题+十年高考),文件包含1_83直线平面平行的判定和性质习题docx、1_83直线平面平行的判定和性质十年高考docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    高中数学高考第5节 直线、平面垂直的判定及其性质 课件练习题:

    这是一份高中数学高考第5节 直线、平面垂直的判定及其性质 课件练习题,共60页。PPT课件主要包含了任意一条,平面上的射影,°和0°,°≤θ≤90°,°≤θ≤180°,两个半平面,垂直于棱,直二面角,点击右图进入等内容,欢迎下载使用。

    高中数学高考第4节 直线、平面垂直的判定与性质 课件练习题:

    这是一份高中数学高考第4节 直线、平面垂直的判定与性质 课件练习题,共60页。PPT课件主要包含了点击右图进入等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        25_专题八84直线、平面垂直的判定和性质(习题+十年高考)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map