![1.2一定是直角三角形吗 课时作业 北师大版八年级上册数学(无答案)01](http://www.enxinlong.com/img-preview/2/3/14852152/0-1695472335046/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![1.2一定是直角三角形吗 课时作业 北师大版八年级上册数学(无答案)02](http://www.enxinlong.com/img-preview/2/3/14852152/0-1695472335113/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![1.2一定是直角三角形吗 课时作业 北师大版八年级上册数学(无答案)03](http://www.enxinlong.com/img-preview/2/3/14852152/0-1695472335129/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北师大版八年级上册2 一定是直角三角形吗同步达标检测题
展开北师大版八年级上册数学1.2一定是直角三角形吗 课时作业
一、单选题
1.如图①,某超市为了吸引顾客,在超市门只离地高4.5m的墙上,装有一个由传感器控制的门铃,人只要移至该门口4m及4m以内时,门铃就会自动发出语音“欢迎光临”.如图②,一个身高1.5m的学生刚走到处,门铃恰好自动响起,则该生头顶到门铃的距离为( )
A.7m B.6m C.5m D.4m
2.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么值为( )
A.25 B.9 C.13 D.169
3.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为( )
A.11cm B.12cm C.13cm D.14cm
4.下列叙述中,正确的是
A.直角三角形中,两条边的平方和等于第三边的平方
B.如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形是直角三角形
C.中,∠A,∠B,∠C的对边分别为a,b,c,若,则∠A=90º
D.中,∠A,∠B,∠C的对边分别为a,b,c,若∠B=90º,则
5.三车魏景元四年(公元263年),由我国古典数学理论的奠基人之一刘徽完成了《九章术注》十卷,《重差》为第一卷,它是我国学者编撰的最早的一部测量数学著作,亦为地图学提供了数学基础,该卷中的第一个问题是求海岛上的山峰的高度,这本书的名称是( )
A.《海岛算经》 B.《孙子算经》 C.《九章算术》 D.《五经算术》
6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形(如图1)拼成的一个大正方形(如图2).设直角三角形较长直角边长为a,较短直角边长为b.若,大正方形的面积为25,则图2中的长为( )
A.3 B.4 C. D.
7.意大利文艺复兴时期的著名画家达•芬奇利用两张一样的纸片拼出不一样的“空洞”,从而巧妙的证明了勾股定理.小明用两张全等的的纸片①和②拼成如图1所示的图形,中间的六边形由两个正方形和两个全等的直角三角形组成.已知六边形的面积为28,.小明将纸片②翻转后拼成如图2所示的图形,其中,则四边形的面积为( )
A.16 B.20 C.22 D.24
8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为25,小正方形面积为1,若用、表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是( )
A.①② B.①②③ C.①②④ D.①②③④
二、填空题
9.如图,在□ABCD中,AC与BD交于点O,且AB=3,BC=5.
①线段OA的取值范围是 ;
②若BD-AC=1,则AC•BD= .
10.如图,四个全等的直角三角形围成一个大正方形,中间阴影部分是一个小正方形,这样就组成一个“赵爽弦图”.若,则正方形的面积为 .
11.如图,一个密封的圆柱形油罐底面圆的周长是10m,高为13m,一只壁虎在距底面1m的A处,C处有食物,壁虎沿油罐的外侧面爬行到C处捕食,它爬行的最短路线长为 m.
12.如图,以数轴的单位长度线段为边作正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是 ,点B表示的数是
13.如图,有一个圆柱,它的高为5cm,底面半径为cm,在点A的一只蚂蚁想吃到点B的食物,爬行的最短路程为 .
三、解答题
14.如图所示,一桥洞的上边是半圆,下边是长方形.已知半圆的直径为2m,长方形的另一边是1m,有一辆厢式小货车,高1.5米,宽1.6米,这辆小货车能否通过此桥洞?通过计算说明理由.
15.我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).
(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.
16.十九世纪英国赫赫有名的谜题创作者在1903年的英国报纸上发表的“蚂蚁爬行”的问题.问题是:如图1,在一个长、宽、高分别为的长方体房间内,一只蚂蚁在右面墙的高度一半位置(即M点处),并且距离前面墙,苍蝇正好在左面墙高度一半的位置(即N点处),并且距离后面墙,蚂蚁爬到苍蝇处应该怎样爬行所走路程最短,最短路程是多少m?这只蚂蚁在长方体表面爬行的问题,引起了当时很多数学爱好者的研究与讨论,今天我们也一起来研究一下这个当时非常热门的数学问题!
【基础研究】如图2,在长、宽、高分别为a,b,c的长方体一个顶点A处有一只蚂蚁,欲从长方体表面爬行去另一个顶点处吃食物,探究哪种爬行路径是最短的?
(1)观察发现:蚂蚁从A点出发,为了走出最短路线,根据两点之间线段最短的知识,并结合展开与折叠原理,一共有3种不同的爬行路线,即图3、图4、图5所示.
填空:图5是由______面与______面展开得到的平面图形;(填“前”、“后”、“左”、“右”、“上”、“下”)
(2)推理验证:如图3,由勾股定理得,,
如图4,由勾股定理得,,
如图5,.
要使得的值最小,
∵
……(请补全推理过程)
∴
∴选择如图______情况,此时的值最小,则的值最小,即这种爬行路径是最短的.
(3)【简单应用】如图6,长方体的长,宽,高分别为,点P是的中点,一只蚂蚁要沿着长方体的表面从点A爬到点P,则爬行的最短路程长为______cm.
(4)【问题回归】
最后让我们再回到那道十九世纪英国报纸上发表的“蚂蚁爬行”的问题(如图1),那只蚂蚁所走的最短路程是______m.
17.我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.
(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= ,OC△OA= ;
(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;
(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.
初中数学北师大版八年级上册2 一定是直角三角形吗课后复习题: 这是一份初中数学北师大版八年级上册2 一定是直角三角形吗课后复习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学北师大版八年级上册第一章 勾股定理2 一定是直角三角形吗课时训练: 这是一份初中数学北师大版八年级上册第一章 勾股定理2 一定是直角三角形吗课时训练,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
北师大版八年级上册2 一定是直角三角形吗课后作业题: 这是一份北师大版八年级上册2 一定是直角三角形吗课后作业题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。