- 新教材2023_2024学年高中数学第3章排列组合与二项式定理综合训练课件新人教B版选择性必修第二册 课件 1 次下载
- 新教材2023_2024学年高中数学第4章概率与统计4.1条件概率与事件的独立性4.1.1条件概率分层作业课件新人教B版选择性必修第二册 课件 1 次下载
- 新教材2023_2024学年高中数学第4章概率与统计4.1条件概率与事件的独立性4.1.3独立性与条件概率的关系分层作业课件新人教B版选择性必修第二册 课件 1 次下载
- 新教材2023_2024学年高中数学第4章概率与统计4.2随机变量4.2.1随机变量及其与事件的联系4.2.2离散型随机变量的分布列分层作业课件新人教B版选择性必修第二册 课件 1 次下载
- 新教材2023_2024学年高中数学第4章概率与统计4.2随机变量4.2.3二项分布与超几何分布分层作业课件新人教B版选择性必修第二册 课件 1 次下载
人教B版 (2019)选择性必修 第二册4.1.2 乘法公式与全概率公式作业课件ppt
展开2.[探究点二]已知某公路上经过的货车与客车的数量之比为2∶1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为( )
4.[探究点三]两批同规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取一件,则这件产品合格的概率是 ,已知取得的产品是合格品,则它取自第一批产品的概率是 .
解析 设A1表示“产品取自第一批产品”,A2表示“产品取自第二批产品”,B=“取得的产品为合格品”,根据题意P(A1)=0.4,P(A2)=0.6,P(B|A1)=0.95,P(B|A2)=0.96.由全概率公式,P(B)=P(A1)P(B|A1)+P(A2)P(B|A2) =0.4×0.95+0.6×0.96=0.956,由贝叶斯公式,
5.[探究点一·人教A版教材例题]已知3张奖券中只有1张有奖,甲、乙、丙3名同学依次不放回地各随机抽取1张.他们中奖的概率与抽奖的次序有关吗?
6.[2023江苏南京天印高级中学高二期中]设某医院仓库中有10盒同样规格的X光片,已知其中有5盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的,且甲、乙、丙三厂生产该种X光片的次品率依次为 .现从这10盒中任取一盒,再从这盒中任取一张X光片,则取得的X光片是次品的概率为( )B.0.1D.0.2
解析 以A1,A2,A3分别表示取得的这盒X光片是由甲厂、乙厂、丙厂生产的,B表示取得的X光片为次品,
7.(多选题)在某一季节,疾病D1的发病率为2%,病人中40%表现出症状S,疾病D2的发病率为5%,病人中18%表现出症状S,疾病D3的发病率为0.5%,病人中60%表现出症状S.则( )A.任意一位病人有症状S的概率为0.02B.病人有症状S时患疾病D1的概率为0.4C.病人有症状S时患疾病D2的概率为0.45D.病人有症状S时患疾病D3的概率为0.25
解析 P(D1)=0.02,P(D2)=0.05,P(D3)=0.005,P(S|D1)=0.4,P(S|D2)=0.18,P(S|D3)=0.6,由全概率公式得
8.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以A1,A2和A3表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B表示由乙箱取出的球是红球的事件,则下列结论正确的是( )A.事件B与事件Ai(i=1,2,3)相互独立
9.甲和乙两个箱子中各装有10个球,其中甲箱中5个红球、5个白球,乙箱中8个红球、2个白球.掷一枚质地均匀的骰子,如果点数为1或2,从甲箱中摸出1个球;如果点数为3,4,5,6,从乙箱中摸出1个球,则摸到红球的概率是 .
10.有两台车床加工同一型号的零件,第1台车床加工的次品率为5%,第2台车床加工的次品率为6%,加工出来的零件混放在一起.已知两台车床加工的零件数分别占总数的45%,55%,则任取一个零件是次品的概率为 .
解析 依题意,任取一个零件,它是次品的概率为5%×45%+6%×55%=5.55%.
11.有3箱同种型号零件,里面分别装有50件、30件、40件,而且一等品分别有20件、12件和24件,现在任取一箱,从中不放回地先后取出2个零件.(1)求先取出的零件是一等品的概率;(2)求两次取出的零件均为一等品的概率.(结果保留两位小数)
解 (1)记事件Ai表示“任取的一箱为第i箱零件”,则i=1,2,3;记事件Bj表示“第j次取到的是一等品”,则j=1,2.
12.某电子设备制造厂所用的元件是由三家元件制造厂提供的.根据以往的记录有以下的数据:
设这三家工厂的产品在仓库中是均匀混合的,且无区别的标志.(1)在仓库中随机地取一只元件,求它是次品的概率;(2)在仓库中随机地取一只元件,若已知取到的是次品,为分析此次品出自何厂,需求出此次品由三家工厂生产的概率分别是多少.试求这些概率.
数学选择性必修 第二册4.1.2 乘法公式与全概率公式教课ppt课件: 这是一份数学选择性必修 第二册4.1.2 乘法公式与全概率公式教课ppt课件,共21页。PPT课件主要包含了新知初探·自主学习,课堂探究·素养提升,答案C等内容,欢迎下载使用。
数学4.1.3 独立性与条件概率的关系.作业课件ppt: 这是一份数学4.1.3 独立性与条件概率的关系.作业课件ppt,共29页。PPT课件主要包含了ACD,BCD等内容,欢迎下载使用。
数学第四章 概率与统计4.1 条件概率与事件的独立性4.1.2 乘法公式与全概率公式课文配套ppt课件: 这是一份数学第四章 概率与统计4.1 条件概率与事件的独立性4.1.2 乘法公式与全概率公式课文配套ppt课件,共30页。PPT课件主要包含了目录索引,这称为贝叶斯公式,探究点一乘法公式,探究点二全概率公式,探究点三贝叶斯公式等内容,欢迎下载使用。