山东省聊城市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)
展开山东省聊城市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.分式的化简求值(共2小题)
1.(2023•聊城)先化简,再求值:(+)÷,其中a=+2.
2.(2021•聊城)先化简,再求值:,其中a=﹣.
二.分式方程的应用(共1小题)
3.(2022•聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
(1)求实际施工时,每天改造管网的长度;
(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?
三.一元一次不等式的应用(共1小题)
4.(2023•聊城)今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见如表:
票的种类
A
B
C
购票人数/人
1~50
51~100
100以上
票价/元
50
45
40
某旅行社接待的甲、乙两个旅游团共102人(甲团人数多于乙团).在打算购买门票时,如果把两团联合作为一个团体购票会比两团分别各自购票节省730元.
(1)求两个旅游团各有多少人?
(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B种门票比购买A种门票节省?
四.一次函数的应用(共1小题)
5.(2021•聊城)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.
(1)A,B两种花卉每盆各多少元?
(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
五.反比例函数系数k的几何意义(共1小题)
6.(2021•聊城)如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6.
(1)求k值和点D的坐标;
(2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.
六.平行四边形的判定与性质(共1小题)
7.(2021•聊城)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.
(1)求证:四边形AECD是平行四边形;
(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.
七.菱形的判定(共1小题)
8.(2022•聊城)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.
(1)求证:AD=CF;
(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.
八.切线的判定与性质(共1小题)
9.(2022•聊城)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.
(1)连接AF,求证:AF是⊙O的切线;
(2)若FC=10,AC=6,求FD的长.
九.相似三角形的判定与性质(共1小题)
10.(2021•聊城)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.
(1)求证:EF是⊙O的切线;
(2)若BC=2,AH=CG=3,求EF和CD的长.
一十.特殊角的三角函数值(共1小题)
11.(2022•聊城)先化简,再求值:÷(a﹣)﹣,其中a=2sin45°+()﹣1.
一十一.条形统计图(共1小题)
12.(2021•聊城)为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:
请根据以上的信息,回答下列问题:
(1)抽取的学生有 人,n= ,a= ;
(2)补全条形统计图;
(3)若该校有学生3200人,估计参加书法社团活动的学生人数.
山东省聊城市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.分式的化简求值(共2小题)
1.(2023•聊城)先化简,再求值:(+)÷,其中a=+2.
【答案】见试题解答内容
【解答】解:原式=[﹣]•
=•
=•
=,
当a=+2时,
原式==.
2.(2021•聊城)先化简,再求值:,其中a=﹣.
【答案】,6.
【解答】解:原式=+÷
=+÷
=+•
=﹣
=,
当a=﹣时,原式==6.
二.分式方程的应用(共1小题)
3.(2022•聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
(1)求实际施工时,每天改造管网的长度;
(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?
【答案】(1)实际施工时,每天改造管网的长度是72米;
(2)以后每天改造管网至少还要增加36米.
【解答】解:(1)设原计划每天改造管网x米,则实际施工时每天改造管网(1+20%)x米,
由题意得:﹣=10,
解得:x=60,
经检验,x=60是原方程的解,且符合题意.
此时,60×(1+20%)=72(米).
答:实际施工时,每天改造管网的长度是72米;
(2)设以后每天改造管网还要增加m米,
由题意得:(40﹣20)(72+m)≥3600﹣72×20,
解得:m≥36.
答:以后每天改造管网至少还要增加36米.
三.一元一次不等式的应用(共1小题)
4.(2023•聊城)今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见如表:
票的种类
A
B
C
购票人数/人
1~50
51~100
100以上
票价/元
50
45
40
某旅行社接待的甲、乙两个旅游团共102人(甲团人数多于乙团).在打算购买门票时,如果把两团联合作为一个团体购票会比两团分别各自购票节省730元.
(1)求两个旅游团各有多少人?
(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B种门票比购买A种门票节省?
【答案】(1)甲旅游团有58人,乙旅游团有44人;
(2)当游客人数最低为46人时,购买B种门票比购买A种门票节省.
【解答】解:(1)设甲旅游团有x人,乙旅游团有y人,
根据题意得:,
解得:.
答:甲旅游团有58人,乙旅游团有44人;
(2)设游客人数为m人,
根据题意得:50m>45×51,
解得:m>45.9,
又∵m为正整数,
∴m的最小值为46.
答:当游客人数最低为46人时,购买B种门票比购买A种门票节省.
四.一次函数的应用(共1小题)
5.(2021•聊城)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.
(1)A,B两种花卉每盆各多少元?
(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
【答案】(1)A种花卉每盆1元,B种花卉每盆1.5元;(2)购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.
【解答】解:(1)设A种花卉每盆x元,B种花卉每盆(x+0.5)元,
根据题意,得:=,
解这个方程,得:x=1,
经检验,x=1是原方程的解,并符合题意,
此时,x+0.5=1+0.5=1.5(元),
∴A种花卉每盆1元,B种花卉每盆1.5元;
(2)设购买A种花卉t盆,购买这批花卉的总费用为w元,
由题意,得:w=t+1.5(6000﹣t)=﹣0.5t+9000,
∵t≤(6000﹣t),
解得:t≤1500,
∵w是t的一次函数,﹣0.5<0,
∴w随t的增大而减小,
∴当t=1500时,w最小,
wmin=﹣0.5×1500+9000=8250(元),
∴购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.
五.反比例函数系数k的几何意义(共1小题)
6.(2021•聊城)如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6.
(1)求k值和点D的坐标;
(2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.
【答案】(1)k=12,点D坐标为(4,3);
(2)点E的坐标为(﹣8,2).
【解答】解:(1)设点D坐标为(m,n),由题意得OH•DH=mn=6,
∴mn=12,
∵点D在y=的图象上,
∴k=mn=12,
∵直线y=﹣x﹣2的图象与x轴交于点A,
∴点A的坐标为(﹣4,0),
∵CD⊥x轴,
∴CH∥y轴,
∴,
∴OH=AO=4,
∴点D的横坐标为4.
∵点D在反比例函数y=的图象上
∴点D坐标为(4,3);
(2)由(1)知CD∥y轴,
∴S△BCD=S△OCD,
∵S△BDE=2S△OCD,
∴S△EDC=3S△BCD,
过点E作EF⊥CD,垂足为点F,交y轴于点M,
∵S△EDC=CD•EF,S△BCD=CD•OH,
∴CD•EF=3×CD•OH,
∴EF=3OH=12.
∴EM=8,
∴点E的横坐标为﹣8
∵点E在直线y=﹣x﹣2上,
∴点E的坐标为(﹣8,2).
六.平行四边形的判定与性质(共1小题)
7.(2021•聊城)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.
(1)求证:四边形AECD是平行四边形;
(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.
【答案】见试题解答内容
【解答】(1)证明:在△AOE和△COD中,
,
∴△AOE≌△COD(ASA),
∴OD=OE,
又∵AO=CO,
∴四边形AECD是平行四边形;
(2)解:∵AB=BC,AO=CO,
∴OB⊥AC,
∴平行四边形AECD是菱形,
∵AC=8,
∴CO=AC=4,
在Rt△COD中,由勾股定理得:OD===3,
∴DE=2OD=6,
∴菱形AECD的面积=AC×DE=×8×6=24.
七.菱形的判定(共1小题)
8.(2022•聊城)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.
(1)求证:AD=CF;
(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.
【答案】(1)证明见解答过程;
(2)当AC⊥BC时,四边形ADCF是菱形,证明见解答过程.
【解答】(1)证明:∵CF∥AB,
∴∠ADF=∠CFD,∠DAC=∠FCA,
∵点E是AC的中点,
∴AE=CE,
∴△ADE≌△CFE(AAS),
∴AD=CF;
(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:
由(1)知,AD=CF,
∵AD∥CF,
∴四边形ADCF是平行四边形,
∵AC⊥BC,
∴△ABC是直角三角形,
∵点D是AB的中点,
∴CD=AB=AD,
∴四边形ADCF是菱形.
八.切线的判定与性质(共1小题)
9.(2022•聊城)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.
(1)连接AF,求证:AF是⊙O的切线;
(2)若FC=10,AC=6,求FD的长.
【答案】见试题解答内容
【解答】(1)证明:在△AOF和△EOF中,
,
∴△AOF≌△EOF(SAS),
∴∠OAF=∠OEF,
∵BC与⊙O相切,
∴OE⊥FC,
∴∠OAF=∠OEF=90°,
即OA⊥AF,
∵OA是⊙O的半径,
∴AF是⊙O的切线;
(2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,
∴AF==8,
∵∠OCE=∠FCA,∠OEC=∠FAC=90°,
∴△OEC∽△FAC,
∴,
设⊙O的半径为r,则,
解得r=,
在Rt△FAO中,∠FAO=90°,AF=8,AO=,
∴OF==,
∴FD=OF﹣OD=﹣,
即FD的长为﹣.
九.相似三角形的判定与性质(共1小题)
10.(2021•聊城)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.
(1)求证:EF是⊙O的切线;
(2)若BC=2,AH=CG=3,求EF和CD的长.
【答案】(1)证明见解析过程;
(2)EF=,CD=.
【解答】证明:(1)∵AB=AC,
∴=,
∵AE是直径,
∴=,
∴∠BAE=∠CAE,
又∵AB=AC,
∴AE⊥BC,
又∵EF∥BC,
∴EF⊥AE,
∴EF是⊙O的切线;
(2)连接OC,设⊙O的半径为r,
∵AE⊥BC,
∴CH=BH=BC=1,
∴HG=HC+CG=4,
∴AG===5,
在Rt△OHC中,OH2+CH2=OC2,
∴(3﹣r)2+1=r2,
解得:r=,
∴AE=,
∵EF∥BC,
∴△AEF∽△AHG,
∴,
∴=,
∴EF=,
∵AH=3,BH=1,
∴AB===,
∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC+∠CDG=180°,
∴∠B=∠CDG,
又∵∠DGC=∠AGB,
∴△DCG∽△BAG,
∴,
∴=,
∴CD=.
一十.特殊角的三角函数值(共1小题)
11.(2022•聊城)先化简,再求值:÷(a﹣)﹣,其中a=2sin45°+()﹣1.
【答案】见试题解答内容
【解答】解:÷(a﹣)﹣
=×﹣
=﹣
=,
∵a=2sin45°+()﹣1
=2×+2
=,
代入得:原式==.
一十一.条形统计图(共1小题)
12.(2021•聊城)为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:
请根据以上的信息,回答下列问题:
(1)抽取的学生有 200 人,n= 54 ,a= 25 ;
(2)补全条形统计图;
(3)若该校有学生3200人,估计参加书法社团活动的学生人数.
【答案】(1)200,54,25;(2)见解析;(3)800人.
【解答】解:(1)抽取的学生有80÷40%=200(人),
360°×=54°,
∴n=54,
×100%=25%,
∴a=25,
故答案为:200,54,25;
(2)参加朗诵社团活动的学生人数为200﹣(50+30+80)=40(人),
补全条形统计图如图:
;
(3)估计参加书法社团活动的学生人数为3200×25%=800(人).
答:估计参加书法社团活动的学生人数为800人.
山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共20页。试卷主要包含了解不等式组,÷;,已知等内容,欢迎下载使用。
山东省聊城市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案): 这是一份山东省聊城市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共28页。试卷主要包含了两点,,连接AC,BC等内容,欢迎下载使用。
山东省潍坊市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份山东省潍坊市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共23页。试卷主要包含了化简,,如图,在计算时,小亮的计算过程如下等内容,欢迎下载使用。