终身会员
搜索
    上传资料 赚现金

    河南省周口恒大中学2023-2024学年高一上学期9月月考数学模拟试题

    立即下载
    加入资料篮
    河南省周口恒大中学2023-2024学年高一上学期9月月考数学模拟试题第1页
    河南省周口恒大中学2023-2024学年高一上学期9月月考数学模拟试题第2页
    河南省周口恒大中学2023-2024学年高一上学期9月月考数学模拟试题第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省周口恒大中学2023-2024学年高一上学期9月月考数学模拟试题

    展开

    这是一份河南省周口恒大中学2023-2024学年高一上学期9月月考数学模拟试题,共14页。试卷主要包含了命题“”的否定是,命题“,”的否定是,下列关系中,正确的个数为,已知命题p,中,点D在线段,的解集是等内容,欢迎下载使用。


    2023-2024学年高一上学期数学9考试模拟试卷

    数学

    试卷考试时间:120分钟   满分:150

     

    I卷(选择题)

    一、单项选择题(每小题5分,共40分)

    1.命题的否定是(  )

    A B

    C D

    2.命题的否定是(     

    A B C D

    3.下列关系中,正确的个数为

     ∈RQ∈Q④|-3|N∈Z.

    A1 B2 C3 D4

    4.已知命题p,命题q.则pq的(    

    A.充分不必要条件 B.必要不充分条件

    C.充要条件 D.既不充分也不必要条件

    5中,点D在线段(不含端点)上,且满足,则的最小值为(    

    A B C6 D8

    6.《几何原本》卷的几何代数法成了后世西方数学家处理数学问题的重要依据.通过这一原理,很多代数的定理都能够通过图形实现证明,也称之为无字证明现有如图所示图形,点F在半圆O上,点C在直径AB上,且OFAB,设ACaBCb,可以直接通过比较线段OF与线段CF的长度完成的无字证明为(  )

    Aa2+b2≥2aba0b0 B

    Ca0b0 Da0b0

    7.某人从甲地到乙地往返的速度分别为,其全程的平均速度为,则(    

    A B

    C D

    8的解集是(    

    A B C D

    二、多项选择题(每小题5分,共20分,有多项符合要求,全部选对得5分,部分选对得2分,有选错得0分)

    9.已知的充要条件,的充分不必要条件,那么(

    A的充分不必要条件 B的必要不充分条件

    C的充分不必要条件 D的必要不充分条件

    10.下列各组中MP表示不同集合的是(    

    AM{3,-1}P{3,-1}

    BM{(31)}P{(13)}

    CM{y|yx21x∈R}P{x|xt21t∈R}

    DM{y|yx21x∈R}P{(xy)|yx21x∈R}

    11.已知a>0b>0,对于代数式,下列说法正确的是(    

    A.最小值为9

    B.最大值是9

    C.当a=b=时取得最小值

    D.当a=b=时取得最大值

    12.下列命题中不正确的是(    

    A.函数的最小值为2 B.函数的最小值为2

    C.函数的最小值为 D.函数的最大值为

     

    II卷(非选择题)

    三、填空题(每小题5分,共20分)

    13.设,且,则的最小值为      .

    14.命题,使的否定是       

    15.已知正实数满足,则的最小值为    

    16.集合,集合,下列间的关系:AB的真子集;BA的真子集;,其中正确的是           .(填写相应序号)

    四、解答题(共6小题,共计70.1710分,第18---22题,每题12分)

    17.已知全集,,,的值.

    18.(1)已知,求的最大值.

    2)已知,求的最小值.

    19.解下列关于的不等式:(为实数)

    (1)

    (2).

    20.设集合,若集合S中的元素同时满足以下条件:

    恰好都含有3个元素;

    为单元素集合;

    则称集合S优选集

    (1)判断集合是否为优选集

    (2)证明:若集合S优选集,则至多属于S中的三个集合;

    (3)若集合S优选集,求集合S的元素个数的最大值.

    21.判断下列命题的否定的真假:

    1)任何一个平行四边形的对边都平行    2)非负数的平方是正数

    3)有的四边形没有外接圆    4,使得

    22.已知函数

    (1)时,求的最值;

    (2)求实数的取值范围,使在区间上是单调函数.


    参考答案:

    1C

    【分析】根据全称命题的否定是特称命题求解即可.

    【详解】因为全称命题的否定是特称命题,否定全称命题时,既要改写量词又要否定结论,

    所以命题的否定是

    故选:C.

    2D

    【分析】根据特称命题的否定性质进行判断即可.

    【详解】命题的否定是

    故选:D

    3C

    【详解】为实数,故正确;是无理数,故正确;由于是无理数,故不正确;|-3|=3∈N,故不正确;,故正确.综上①②⑤正确.选C

    4B

    【分析】分析得到命题p再判断即可

    【详解】命题p:令,可得,即,故,解得

    pq的必要不充分条件

    故选:B

    5B

    【分析】根据三点共线可得xy的关系,再利用基本不等式解出最小值即可.

    【详解】,且三点共线,所以,则

    当且仅当时,即取等号,

    有最小值

    故选:B.

    【点睛】本题考查了向量共线定理和基本不等式的性质,属于基础题.

    6C

    【分析】由图形可知,在Rt△OCF中,由勾股定理可求CF,结合CFOF即可得出.

    【详解】解:由图形可知,

    Rt△OCF中,由勾股定理可得,

    CF

    CFOF

    故选:C.

    7C

    【分析】根据平均速度的知识求得,结合基本不等式求得正确答案.

    【详解】设甲乙两地距离为

    ,其中

    所以

    ,所以

    由于

    综上所述,.

    故选:C

    8D

    【分析】由题不等式可化为,然后利用穿根法可解.

    【详解】由

    .

    故选:D.

    9BC

    【解析】根据充分条件和必要条件的定义即可判断.

    【详解】因为是充要条件,所以

    因为的充分不必要条件,所以

    所以,则的的必要不充分条件,

    ,可得

    因为,所以,所以的充分不必要条件,

    故选:BC

    【点睛】关键点点睛:正确解决本题的关键是准确理解充分条件和必要条件的定义,是充分条件,同时的必要条件;如的充分不必要条件指,也可以说成的的必要不充分条件.

    10BD

    【分析】选项A中,MP的代表元素相同,是同集合;

    选项B中,(31)(13)表示不同的点,故MP

    选项C中,解出集合MP

    选项D中,MP的代表元素不同,是不同的集合.

    【详解】选项A中,根据集合的无序性可知

    选项B中,(31)(13)表示不同的点,故MP

    选项C中,M{y|yx21xR}=P{x|xt21tR}=,故M=P

    选项D中,M是二次函数yx21xR的所有因变量组成的集合,而集合P是二次函数yx21xR图象上所有点组成的集合,故

    故选:BD

    11AC

    【分析】先利用,代入=并展开,再利用基本不等式求最值及取最值的条件即可.

    【详解】因为,所以==·

    =5+2,当且仅当时,即a=b=时,等号成立.

    所以a=b=时,代数式取得最小值9.

    故选:AC.

    【点睛】思路点睛:

    利用基本不等式求最值时,常有以下思路,需注意取等号条件是否成立.

    1)积定,利用,求和的最小值;

    2)和定,利用,求积的最大值;

    3)妙用“1”拼凑基本不等式求最值.

    12ABC

    【分析】构造基本不等式的条件,结合基本不等式,逐项判定,即可求解.

    【详解】对于A中,当时,

    当且仅当时,等号成立,所以A不正确;

    对于B中,函数

    等号成立,但无解,所以B不成立;

    对于C中,函数

    当且仅当时,即时,等号成立,所以函数的最大值为

    所以C不正确,D正确.

    故选:ABC.

    13

    【解析】将等式变形为,由此得出,展开后利用基本不等式可得出的最小值.

    【详解】在等式两边同时除以

    当且仅当时,等号成立,

    因此,的最小值为.

    故答案为:.

    【点睛】本题考查利用基本不等式求最值,涉及的妙用,解题时将注意将定值条件化简变形,考查计算能力,属于中等题.

    14,都有

    【分析】由题意,根据特称命题的否定,可得答案.

    【详解】命题,使的否定为,都有

    故答案为:,都有

    158

    【分析】变形后利用基本不等式即可得出.

    【详解】因为正实数满足

    所以

    所以

    当且仅当,即时取等号,

    所以的最小值为8

    故答案为:8

    16

    【分析】分为偶数、为奇数可得集合BA的关系.

    【详解】当为偶数时,,当为奇数时,令

    其必为偶数且只是部分偶数

    所以BA的真子集

    故答案为:

    【点睛】本题考查的是集合间的基本关系,属于基础题.

    17.

    【详解】试题分析:根据,所以,列出关于的不等式组,进而求得.

    试题解析:根据,所以,

    所以,

    18.(11;(22

    【分析】(1)由基本不等式求出的最小值后可得所求最大值.

    2)凑出积为定值后由基本不等式求得最小值.

    【详解】(1,则

    当且仅当,即时等号成立.所以的最大值为1

    2)因为

    所以

    当且仅当,即时等号成立.所以所求最小值为2

    19(1)详见解析;

    (2)详见解析

     

    【分析】(1)分讨论,结合条件即得;

    2)由题可得,然后分类讨论即得.

    【详解】(1)原不等式对应的一元二次方程为:

    时,,原不等式无解;

    时,对应一元二次方程的两个解为:

    所以的解为:

    综上所述,时,原不等式无解,当时,原不等式的解集为

    2)原不等式等价于

    时,解集为

    时,原不等式可化为

    因为,所以解集为

    时,,解集为

    时,原不等式等价于

    所以,解集为

    时,,解集为

    综上所述,当时,解集为;当时,解集为

    时,解集为;当时,解集为.

    20(1)不是优选集 优选集

    (2)证明过程见详解;

    (3)7

     

    【分析】(1)根据优选集的定义判断即可;

    2)先取,其中,可得可以属于S中的三个集合,再用反证法证明不存在,使得可以属于S中的四个集合即可;

    3)结合(2)可知S中的元素个数可以为7,再用反证法证明不存在即可.

    【详解】(1)对于集合

    满足条件恰好都含有3个元素;

    满足条件为单元素集合;

    但不满足条件,则不是优选集

    对于集合

    满足条件恰好都含有3个元素;

    满足条件为单元素集合;

    满足条件.所以集合优选集

    2)由集合S优选集

    结合(1)显然可以属于S中的零个集合,一个集合,两个集合,

    取集合,其中

    此时可以属于S中的两个集合,三个集合,

    假设存在,使得可以属于S中的四个集合,即,其中

    为了满足条件,显然还存在

    为了满足条件中的元素必须在中除外的另外两个元素中各选一个,

    此时中有4个元素,显然不满足条件

    因此假设不成立,

    故若集合S优选集,则至多属于S中的三个集合;

    3)结合(2)有集合,其中,此时S的元素个数为7

    假设存在,则可得中必有元素

    不妨令,要使都为单元素集合,

    时,,舍去;

    时,不是单元素集合,舍去;

    时,不是单元素集合,舍去;

    时,不是单元素集合,舍去,

    因此假设不成立,

    故集合S的元素个数的最大值为7

    【点睛】小问(2)的关键是先举例得到可以属于S中的三个集合,再用反证法证明不存在,使得可以属于S中的四个集合;小问(3)的关键先得到S中的元素个数可以为7,再用反证法证明不存在

    21.答案见解析

    【分析】(1)写出原命题的否定,由平行四边形的性质可判断真假;

    2)写出原命题的否定,平方数的性质可判断真假;

    3)写出原命题的否定,由原命题的真假可判断命题否定的真假;

    4)写出原命题的否定,由原命题的真假可判断命题否定的真假.

    【详解】(1)命题的否定为存在一个平行四边形的对边不平行

    由平行四边形的定义知该命题的否定是假命题;

    2)命题的否定为存在一个非负数的平方不是正数

    因为,不是正数,所以该命题的否定是真命题;

    3)命题的否定为所有四边形都有外接圆

    因为只有对角互补的四边形才有外接圆,所以原命题为真命题,命题的否定为假命题;

    4)命题的否定为,都有

    因为当时,,所以原命题为真命题,命题的否定为假命题.

    22(1)

     

    (2)

     

    【分析】(1)求出函数对称轴,判断函数在上的单调性即可求出最值;

    2)根据函数对称轴不在区间内,列不等式求解即可.

    【详解】(1)当时,,对称轴为,由于

    上单调递减,在上单调递增.

    的最小值是,又,故的最大值是35.

    2)由于函数的图像开口向上,对称轴是,所以要使上是单调函数,应有,即.

     

    相关试卷

    2023-2024学年河南省周口市恒大中学高一上学期12月月考数学试题含答案:

    这是一份2023-2024学年河南省周口市恒大中学高一上学期12月月考数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    河南省周口恒大中学2023-2024学年高一上学期12月月考数学试题(Word版附解析):

    这是一份河南省周口恒大中学2023-2024学年高一上学期12月月考数学试题(Word版附解析),共24页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    河南省周口市川汇区周口恒大中学2023-2024学年高二上学期12月月考数学试题:

    这是一份河南省周口市川汇区周口恒大中学2023-2024学年高二上学期12月月考数学试题,共17页。试卷主要包含了在等差数列中,,,直线与圆相切,则,椭圆的焦点坐标为,已知点F,直线l,已知圆等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map