- 8.4《用因式分解法解一元二次方程》 教案 教案 0 次下载
- 8.5《一元二次方程的根与系数的关系》 教案 教案 0 次下载
- 9.1.1《成比例线段(1)》 教案 教案 0 次下载
- 9.1.2《成比例线段(2)》 教案 教案 0 次下载
- 9.2《平行线分线段成比例》 教案 教案 0 次下载
初中数学鲁教版 (五四制)八年级下册6 一元二次方程的应用教案
展开第八章 一元二次方程
6.一元二次方程的应用(3)
一、学生知识状况分析
八年级下学期学生的思维应该说已经具有一定的水平,对于方程的理解也不是第一次接触,在学习一元一次方程及其应用和二元一次方程组、分式方程及其应用时,学生就已经经历了“问题情境-建立方程模型-解决问题”这一数学化的过程,理解了学习方程的意义,对于简单的实际问题也能够通过寻找其中的数量关系来解决。
本节内容的设置,正是《新课程标准》在知识点上呈螺旋上升趋势的具体体现。但是学生的思维需要逐渐培养,在学生具备一定的思维水平的基础上,教师是引导学生学习的关键,在学习难度较大的知识点时,兴趣是关键。教师还应从学生的积极性入手,努力去挖掘学生的主动性和合作性,以增强学生克服困难的决心。
本节主要研究列一元二次方程解应用题,研究过程中让学生亲自经历和体验运用一元二次方程解决实际问题的过程,使其认识到运用一元二次方程解决实际问题源于解决问题的实际需要,通过一元二次方程建模的应用以及教师的形象比喻,使学生自然感受一元二次方程建模的意义和作用;同时关注学生运用一元二次方程解决实际问题的多样化和合理化,从而培养学生解决问题的兴趣和能力,提高学生的思维水平和应用数学知识去解决实际问题的意识。
二、教学任务分析
本节课的主题是发展学生的应用意识,这也是方程教学的重要任务。但学生应用意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。因此,本节教学中须要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及方程观的初步形成。显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。为此,本节课的教学目标是:
①通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
②经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,从中感受到数学学习的意义;
③能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;
④在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。
三、教学过程分析
本课时分为以下五个教学环节:第一环节:前置诊断,开辟道路;第二环节:做一做,探索新知;第三环节:练一练,巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;前置诊断,开辟道路
活动内容:
请同学们回忆并回答与利润相关的知识?
9折要乘以90%或0.9或,那么x折呢?
活动目的:通过回顾,使学生熟悉利润背景的实际问题中蕴含的数量关系。
活动实际效果:学生掌握得比较理想,关于x折问题,需要关注学生掌握情况。
第二环节:做一做,探索新知
活动内容:
新华商场销售某种冰箱,每台进货价为2500元。市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的降价应为多少元?(做了改动,降低难度)
分析:本例中涉及的数量关系较多,学生在思考时可能会有一定的难度。所以,教学时我采用列表的形式分析其中的数量关系:
本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5000元
如果设每台冰箱降价x元,那么每台冰箱的定价应为 元。
| 每天的销售量/台 | 每台的销售利润/元 | 总销售利润/元 |
降价前 |
|
|
|
降价后 |
|
|
|
填完上表后,就可以列出一个方程,进而解决问题了。
当然,解题思路不应拘泥于这一种,再利用上述方法解完此题后,可以鼓励学生自主探索,找寻其他解题的思路和方法。如求定价为多少?直接设每台冰箱的定价应为x元,应如何解决?
巩固练习:
某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?
请你利用方程解决这一问题。
活动实际效果:每种类型的问题设置都经过精心准备。通过问题串的设立,将比较复杂、难以理解的题目分成多个小的题目去理解,使学生在不知不觉中克服困难,体会到列方程解应用题的三个重要环节:整体系统的审清题意;寻找等量关系;正确求解并检验解的合理性。采取的是一讲一练,从巩固练习的准确程度上来看,学生掌握得比较好,能够达到预期的效果。
探索与创新:
一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手。这次会议到会的人数是多少?
活动目的:本节课是第3课时,在教学过程中我体现“学生为主体,教师为主导,训练为主线,思维为核心”的教学思想,尊重学生的人格及创造精神,把教学的重心和立足点转移到引导学生主动积极的“学”上来,引导学生想学、会学、善学。通过发现式、启发式、讨论式等先进的教学方法,才能调动学生的主动性、自觉性,激发积极的思维,采取启发、引导、积极参与等方法,指导学生独立思考,寻找问题的可能性答案;培养学生敢于批判、勇于创新的精神;培养学生发现问题、分析问题、解决问题的勇气和能力。
对于学生的评价,应关注学生在学习过程中的表现,如能否积极的参加活动,能否从不同的角度去思考问题等等,而不是仅局限于学生是否会列方程。培养学生的创新精神,对有创新的学生要提出表扬。鼓励学生使用数学语言,有条理的表达自己的思考过程,鼓励学生大胆质疑和创新。
活动实际效果:每种类型的问题设置都经过精心准备。通过问题串的设立,将比较复杂、难以理解的题目分成多个小的题目去理解,使学生在不知不觉中克服困难,体会到列方程解应用题的三个重要环节:整体系统的审清题意;寻找等量关系;正确求解并检验解的合理性。采取的是一讲一练,从巩固练习的准确程度上来看,学生掌握得比较好,能够达到预期的效果。
第三环节:练一练,巩固新知
活动内容:
1.P77随堂练习
2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
活动目的:通过两道问题的解决,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度。
活动实际效果:选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及方程观的进一步形成。
第四环节:收获与感悟
活动内容:
通过两节课的学习,你能简要说明利用方程解决实际问题的关键和步骤吗?有哪些收获?
活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中;并且通过对三个问题的解决,加深学生利用方程解决实际问题的意识和提高解题的能力。
活动实际效果:
学生能说出利用方程解决实际问题的关键和步骤:
关键:寻找等量关系
步骤:其一是整体地、系统地审清问题;其二是把握问题中的“相等关系”;其三是正确求解方程并检验解的合理性。
学生通过回顾本节课的学习过程,体会利用列一元二次方程解决实际问题的方法和技巧,进一步提高自己解决问题的能力。
第五环节:布置作业
P77习题8.13第1、2题
学法指导
设未知数(未知量成了已知量),带着未知量去“翻译 ”题目申的有关信息,然后将这些含有的量表示成等量关系,就是应用题的解题策略。
无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
初中数学沪科版八年级下册17.5 一元二次方程的应用教学设计: 这是一份初中数学沪科版八年级下册17.5 一元二次方程的应用教学设计,共2页。
初中数学沪科版八年级下册17.5 一元二次方程的应用教学设计及反思: 这是一份初中数学沪科版八年级下册17.5 一元二次方程的应用教学设计及反思,共3页。教案主要包含了教学内容,教学目标,教学重难点,导学过程,知识回顾,创设情境,新知探究,知识梳理等内容,欢迎下载使用。
数学八年级下册2.3 一元二次方程的应用教学设计: 这是一份数学八年级下册2.3 一元二次方程的应用教学设计,共2页。教案主要包含了情景导入,初步认知,合作探究,运用新知,深化理解,师生互动,学以致用等内容,欢迎下载使用。