所属成套资源:新高考数学一轮复习课时过关练习 (含解析)
新高考数学一轮复习课时过关练习第02章 函数与基本初等函数第9节 函数模型及其应用 (含解析)
展开
这是一份新高考数学一轮复习课时过关练习第02章 函数与基本初等函数第9节 函数模型及其应用 (含解析),共19页。试卷主要包含了几种常见的函数模型,不正确,5元/瓶,))等内容,欢迎下载使用。
第9节 函数模型及其应用
考试要求 1.了解指数函数、对数函数与一次函数增长速度的差异,理解“指数爆炸”“对数增长”“直线上升”等术语的含义.2.通过收集、阅读一些现实生活、生产实际等数学模型,会选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用.
1.指数、对数、幂函数模型性质比较
函数
性质
y=ax
(a>1)
y=logax
(a>1)
y=xn
(n>0)
在(0,+∞)
上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图象
的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值
变化而
各有不同
值的比较
存在一个x0,当x>x0时,有logax0且a≠1,b≠0)
与幂函数相关的模型
f(x)=axn+b(a,b,n为常数,a≠0)
1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.
2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.
3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.
1.思考辨析(在括号内打“√”或“×”)
(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( )
(2)函数y=2x的函数值比y=x2的函数值大.( )
(3)不存在x0,使ax00)的增长速度.( )
答案 (1)× (2)× (3)× (4)√
解析 (1)9折出售的售价为100(1+10%)×=99(元).
∴每件赔1元,(1)错误.
(2)当x=2时,2x=x2=4.不正确.
(3)如a=x0=,n=,不等式成立,因此(3)错误.
2.(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(≈1.259)( )
A.1.5 B.1.2 C.0.8 D.0.6
答案 C
解析 由题意知4.9=5+lg V,得lg V=-0.1,得V=10-≈0.8,所以该同学视力的小数记录法的数据约为0.8.
3.(多选)(2021·青岛质检)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论正确的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
答案 BCD
解析 由题图可知,2014年8月到9月的月接待游客量在减少,则A错误.其余全部正确.
4.某商店每月按出厂价每瓶3元购进一种饮料,根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若零售价每降低(升高)0.5元,则可多(少)销售40瓶,在每月的进货当月销售完的前提下,为获得最大利润,销售价应定为( )
A.3.75元/瓶 B.7.5元/瓶
C.12元/瓶 D.6元/瓶
答案 D
解析 设销售价每瓶定为x元,利润为y元,则y=(x-3)=80(x-3)·(9-x)=-80(x-6)2+720(x≥3),所以x=6时,y取得最大值.
5.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:
x
0.50
0.99
2.01
3.98
y
-0.99
0.01
0.98
2.00
则对x,y最适合的拟合函数是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2x
答案 D
解析 当x=0.99时,y=0.01,可排除A,当x=2.01时,y=0.98,可排除B、C,故选D.
6.(2022·北京丰台一模)大气压强p=,它的单位是“帕斯卡”(Pa.1 Pa=1 N/m2),大气压强p(Pa)随海拔高度h(m)的变化规律是p=p0e-kh(k=0.000 126 m-1),p0是海平面大气压强.已知在某高山A1,A2两处测得的大气压强分别为p1,p2,=.那么A1,A2两处的海拔高度的差约为(参考数据:ln 2≈0.693)( )
A.550 m B.1 818 m
C.5 500 m D.8 732 m
答案 C
解析 ===ek·h2-k·h1=,故h1-h2=≈=5 500 m.
考点一 利用函数图象刻画实际问题的变化过程
1.某“跑团”为了解团队每月跑步的平均里程,收集并整理了2021年1月至2021年11月期间“跑团”每月跑步的平均里程(单位:千米)的数据.绘制了下面的折线图.
根据折线图,下列结论正确的是( )
A.月跑步平均里程的中位数为6月份对应的平均里程数
B.月跑步平均里程逐月增加
C.月跑步平均里程高峰期大致在8月和9月
D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳
答案 D
解析 由折线图知,月跑步平均里程的中位数为5月份对应的平均里程数,A错误;
月跑步平均里程不是逐月增加的,B错误;
月跑步平均里程高峰期大致在9月和10月,C错误,故选D.
2.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:
①0时到3时只进水不出水;
②3时到4时不进水只出水;
③4时到5时不进水也不出水.
则一定正确的论断是________(填序号).
答案 ①
解析 由甲、乙、丙图可得进水速度为1,出水速度为2,结合丙图中直线的斜率可知,只进水不出水时,蓄水量增加的速度是2,故①正确;
不进只出水时,蓄水量减少的速度为2,故②不正确;
两个进水,一个出水时,蓄水量减少的速度也是0,故③不正确.
3.(2022·武汉调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为米,如图所示的散点图,记录了样本树的生长时间t(年)与树高y(米)之间的关系.请你据此判断,在下列函数模型:①y=2t-a;②y=a+log2t;③y=t+a;④y=+a中(其中a为正的常数),生长年数与树高的关系拟合最好的是________(填写序号),估计该树生长8年后的树高为________米.
答案 ②
解析 由散点图的走势,知模型①不合适.
曲线过点,则后三个模型的解析式分别为②y=+log2t;③y=t+;④y=+,当t=1时,代入④中,得y=,与图不符,易知拟合最好的是②.
将t=8代入②式,得y=+log28=(米).
感悟提升 判断函数图象与实际问题变化过程相吻合的两种方法
(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.
(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际的情况.
考点二 已知函数模型解决实际问题
例1 (2021·承德二模)我国在2020年进行了第七次人口普查登记,到2021年4月以后才能公布结果.人口增长可以用英国经济学家马尔萨斯提出的模型:y=y0·ert,其中t表示经过的时间(单位:年),y0表示t=0时的人口数(单位:亿),r表示人口的年平均增长率.以国家统计局发布的2000年第五次人口普查登记(已上报户口)的全国总人口12.43亿人(不包括香港、澳门和台湾地区)和2010年第六次人口普查登记(已上报户口)的全国总人口13.33亿人(不包括香港、澳门和台湾地区)为依据,用马尔萨斯人口增长模型估计我国2020年年末(不包括香港、澳门和台湾地区)的全国总人口数为(13.332=177.688 9,12.432=154.504 9)( )
A.14.30亿 B.15.20亿
C.14.62亿 D.15.72亿
答案 A
解析 由马尔萨斯人口增长模型,得13.33=12.43e10r,即e10r=,所以我国2020年年末的全国总人口数约为y=13.33e10r==≈14.30(亿).
感悟提升 1.求解已知函数模型解决实际问题的关注点.
(1)认清所给函数模型,弄清哪些量为待定系数;
(2)根据已知利用待定系数法,确定模型中的待定系数.
2.利用函数模型,借助函数的性质、导数等求解实际问题,并进行检验.
训练1 (2021·益阳二模)我们检测视力时会发现对数视力表中有两列数据,分别是小数记录与五分记录,如图所示(已隐去数据),其部分数据如下表:
小数
记录x
0.1
0.12
0.15
0.2
…
?
…
1.0
1.2
1.5
2.0
五分
记录y
4.0
4.1
4.2
4.3
…
4.7
…
5.0
5.1
5.2
5.3
现有如下函数模型:①y=5+lg x,②y=5+lg,x表示小数记录数据,y表示五分记录数据,请选择最合适的模型解决如下问题:小明同学检测视力时,医生告诉他视力为4.7,则小明同学的小数记录数据为(参考数据:10-0.3≈0.5,5-0.22≈0.7,
10-0.1≈0.8)( )
A.0.3 B.0.5
C.0.7 D.0.8
答案 B
解析 由题中数据可知,当x=1时,y=5,两个函数模型都符合;
当x=0.1时,由y=5+lg x,得y=5+lg 0.1=4,与表中的数据符合,而y=5+lg=5.1,与表中的数据不符,
所以选择模型y=5+lg x更合适,
此时令y=4.7,则lg x=-0.3,
所以x=10-0.3≈0.5.
考点三 构造函数模型解决实际问题
角度1 构造二次函数模型
例2 某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为万件,要使附加税不少于128万元,则R的取值范围是( )
A.[4,8] B.[6,10]
C.[4%,8%] D.[6%,10%]
答案 A
解析 根据题意,要使附加税不少于128万元,需×160×R%≥128,
整理得R2-12R+32≤0,解得4≤R≤8,即R∈[4,8].
角度2 构造指数、对数函数模型
例3 (1)(2022·青岛检测)一个放射性物质不断衰变为其他物质,每经过一年就有的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是( )
A.6 B.5 C.4 D.3
答案 C
解析 设这种放射性物质最初的质量为1,经过x(x∈N)年后,剩余量是y,
则有y=.
依题意得≤.
则22x≥100,解得x≥4.
所以至少需要的年数是4.
(2)(2022·武汉检测)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lg.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的( )
A.1倍 B.10倍
C.100倍 D.1 000倍
答案 B
解析 设老师上课时声音强度、一般两人小声交谈时声音强度分别为x1 W/m2,x2 W/m2,
根据题意得d(x1)=9lg=63,解得x1=10-6,d(x2)=9lg=54,
解得x2=10-7,所以=10,
因此,老师上课时声音强度约为一般两人小声交谈时声音强度的10倍.
角度3 构建分段函数模型
例4 小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本3万元,每生产x万件,需另投入流动成本W(x)万元,在年产量不足8万件时,W(x)=x2+x(万元).在年产量不小于8万件时,W(x)=6x+-38(万元).每件产品售价5元.通过市场分析,小王生产的商品当年能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
解 (1)每件产品售价为5元,
则x万件产品的销售收入为5x万元.
当0
相关试卷
这是一份新高考数学一轮复习课时过关练习第02章 函数与基本初等函数第8节 函数与方程 (含解析),共17页。试卷主要包含了理解函数的零点与方程的解的联系,函数零点存在定理等内容,欢迎下载使用。
这是一份新高考数学一轮复习课时过关练习第02章 函数与基本初等函数第7节 函数的图象 (含解析),共20页。试卷主要包含了利用图象变换法作函数的图象,))等内容,欢迎下载使用。
这是一份新高考数学一轮复习课时过关练习第02章 函数与基本初等函数第6节 对数与对数函数 (含解析),共17页。试卷主要包含了对数的性质、运算性质与换底公式,对数函数及其性质,反函数等内容,欢迎下载使用。