北师大版九年级上册2 矩形的性质与判定精品课后测评
展开
这是一份北师大版九年级上册2 矩形的性质与判定精品课后测评,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年北师大版数学九年级上册《矩形的性质与判定》同步练习一 、选择题1.矩形的对角线一定具有的性质是( )A.互相垂直 B.互相垂直且相等 C.相等 D.互相垂直平分2.如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为( )A.15° B.20° C.25° D.30° 3如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是( )A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形4.下列三个命题中,是真命题的有( )①对角线相等的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.A.3个 B.2个 C.1个 D.0个 5.如图,在矩形纸片ABCD中,将△BCD沿BD折叠,C点落在C′处,则图中共有全等三角形( )A.2对 B.3对 C.4对 D.5对6.如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )A.600m2 B.551m2 C.550m2 D.500m27.矩形具有而平行四边形不一定具有的性质是( )A.对边相等 B.对角相等 C.对角线相等 D.对角线互相平分8.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边中点D重合,若BC=8,CD=6,则CF长为( )A.1.5 B. C.2 D.19.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为( )A.5 B. C. D.﹣1 10.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4二 、填空题11.如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号) . 12.如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠AEF=______. 13.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为 .14.在矩形ABCD中,A(4,1),B(0,1),C(0,3),则点D的坐标为 . 15.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB= .16.如图,矩形△ABCD中,AB=2,AD=1,E为CD中点,P为AB边上一动点(含端点),F为CP中点,则△CEF的周长最小值为______.
三 、解答题17.如图,AC是矩形ABCD的一条对角线.(1)作AC的垂直平分线EF,分别交AB、DC于点E、F,垂足为O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)求证:OE=OF 18.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF,(1)求证:AE=CF;(2)若AB=3,∠AOD=120°,求矩形ABCD的面积. 19.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少? 20.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形. 21.如图,延长平行四边形ABCD的边DC到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:BF=CF;(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四边形ABCD的面积. 22.如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.(1)求证:四边形ABCD是平行四边形;(2)若AC=2OE,试判断四边形AECF的形状,并说明理由. 23.如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.
答案1.C.2.B.3.B4.B.5.C6.B.7.C.8.B.9.D10.C.11.答案为:①④.12.答案为:75°.13.答案为:3.14.答案为:(4,3).15答案为:.16.答案为:+1.17.解:(1)如图,EF为所作;(2)证明:∵EF垂直平分AC,∴OA=OC,∵四边形ABCD为矩形,∴OB=OD,AB∥CD,∴∠E=∠F,在△BOE和△DOF中∴△BOE≌△DOF(AAS),∴OE=OF.18.证明:(1)∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=3,∴AC=2OA=6,在Rt△ABC中,BC=3,∴矩形ABCD的面积=AB•BC=3×3=9.19.证明:(1)∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.20.证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.21.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,BC=AD,∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴BF=CF;(2)解:∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠D,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形,∴∠BAC=90°,∵BC=AD=4,∴AC=2,∴平行四边形ABCD的面积=AB•AC=2×2=4.22.证明:(1)∵AB∥CD,∴∠ABD=∠CDB,又∵∠AEF=∠CFB,∴∠AEB=∠CFD,又∵BE=DF,∴△ABE≌△CDF(ASA),∴AB=CD,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,∴OB=OD OA=OC=AC∵BE=DF∴OB﹣BE=DO﹣DF∴OE=OF又∵OA=OC∴四边形AECF是平行四边形又∵AC=2OE,EF=2OE∴AC=EF∴平行四边形AECF是矩形.23.证明:(1)∵F为BE中点,AF=BF,∴AF=BF=EF,∴∠BAF=∠ABF,∠FAE=∠AEF,在△ABE中,∠BAF+∠ABF+∠FAE+∠AEF=180°,∴∠BAF+∠FAE=90°,又四边形ABCD为平行四边形,∴四边形ABCD为矩形.(2)解:连接EG,过点E作EH⊥BC,垂足为H,∵F为BE的中点,FG⊥BE,∴BG=GE,∵S△BFG=5,CD=4,∴S△BGE=10=0.5BGEH,∴BG=GE=5,在Rt△EGH中,GH=3,在Rt△BEH中,BE=4=BC,∴CG=BC﹣BG=4﹣5.
相关试卷
这是一份数学九年级上册2 矩形的性质与判定同步达标检测题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版九年级上册第一章 特殊平行四边形2 矩形的性质与判定课时训练,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大版九年级上册第一章 特殊平行四边形2 矩形的性质与判定课后复习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。