新高考数学一轮复习基础巩固8.9 幂函数(精讲)(含解析)
展开8.9 幂函数(精讲)(基础版)
考点一 幂函数的三要素
【例1-1】(2022·四川省)幂函数y=(m∈Z)的图象如图所示,则实数m的值为________.
【答案】1
【解析】有图象可知:该幂函数在单调递减,所以,解得,,故可取,又因为该函数为偶函数,所以为偶数,故故答案为:
【例1-2】(2022课时练习)(1)函数的定义域是________,值域是________;
(2)函数的定义域是________,值域是________;
(3)函数的定义域是________,值域是________;
(4)函数的定义域是________,值域是________.
【答案】(1) (2)
(3) (4)
【解析】(1)幂函数图像如图所示,定义域为,值域为,
(2)幂函数图像如图所示,定义域为,值域为,
(3)幂函数图像如图所示,定义域为,值域为,
(4)幂函数图像如图所示,定义域为,值域为,
故答案为:(1);,
(2);,
(3);,
(4);.
【一隅三反】
1.(2022·云南师大附中高三阶段练习)已知为幂函数, 且, 则( )
A. B. C. D.
【答案】B
【解析】因为为幂函数,
设,则,
所以,可得,则.
故选:B
2.(2022·全国·模拟预测(文))设,则“函数的图象经过点”是“函数在上递减”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【解析】函数的图象经过点,则,
因为,所以,所以,
所以在上递减,
而在上递减,函数的图象不一定经过点,
如:.
所以“函数的图象经过点”是“函数在上递减”的充分不必要条件.
故选:A.
3.(2022·河北·邢台市第二中学高三阶段练习)设,函数,若的最小值为,则实数的取值范围为( )
A. B. C. D.
【答案】A
【解析】当时,,
当且仅当时,等号成立;
即当时,函数的最小值为,
当时,,
要使得函数的最小值为,则满足,解得,
即实数的取值范围是.
故选:A.
4.(2022·河北)已知函数,若函数的值域为,则实数的取值范围为( )
A. B. C. D.
【答案】D
【解析】函数在上单调递减,其函数值集合为,
当时,的取值集合为,的值域,不符合题意,
当时,函数在上单调递减,其函数值集合为,
因函数的值域为,则有,解得,
所以实数的取值范围为.故选:D
考点二 幂函数的性质
【例2-1】(2022·黑龙江·鸡东县第二中学二模)当时,幂函数为减函数,则实数m的值为( )
A. B.
C.或 D.
【答案】A
【解析】因为函数既是幂函数又是的减函数,所以解得:.
故选:A.
【例2-2】(2022·广西)已知,,,,则( )
A. B.
C. D.
【答案】D
【解析】由题得,,,,因为函数在上单调递增,所以.又因为指数函数在上单调递增,所以.故选:D.
【例2-3】(2022·云南)已知幂函数的图象关于y轴对称,且在上单调递减,则满足的a的取值范围为( )
A. B.
C. D.
【答案】D
【解析】幂函数在上单调递减,故,解得.又,故m=1或2.
当m=1时,的图象关于y轴对称,满足题意;
当m=2时,的图象不关于y轴对称,舍去,故m=1.
不等式化为,
函数在和上单调递减,
故或或,解得或.
故应选:D.
【一隅三反】
1.(2022·黑龙江·嫩江市高级中学高三开学考试)下列关于幕函数的命题中正确的有( )
A.幂函数图象都通过点
B.当幂指数时,幂函数的图象都经过第一、三象限
C.当幂指数时,幂函数是增函数
D.若,则函数图象不通过点
【答案】B
【解析】对于A,当时,幂函数图象不通过点,A错误;
对于B,幂指数时,幂函数分别为 ,三者皆为奇函数,
图象都经过第一、三象限,故B正确;
对于C,当时,幂函数在上皆单调递减,C错误;
对于D,若,则函数图象不通过点,通过点,D错误,故选:B
2.(2023·全国·高三专题练习)幂函数在x(0,+∞)上是减函数,则m=( )
A.﹣1 B.2 C.﹣1或2 D.1
【答案】A
【解析】∵幂函数,
∴m2﹣m﹣1=1,
解得m=2,或m=﹣1;
又x(0,+∞)时f(x)为减函数,
∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;
当m=﹣1时,m2+m﹣3=﹣3,幂函数为,满足题意;
综上,.
故选:A.
3.(2022·全国·高三专题练习)“幂函数在上为增函数”是“函数为奇函数”的( )条件
A.充分不必要 B.必要不充分
C.充分必要 D.既不充分也不必要
【答案】A
【解析】要使函数是幂函数,且在上为增函数,
则,解得:,当时,,,
则,所以函数为奇函数,即充分性成立;
“函数为奇函数”,
则,即,
解得:,故必要性不成立,
故选:A.
4.(2022·全国课时练习)如图所示是函数(且互质)的图象,则( )
A.是奇数且 B.是偶数,是奇数,且
C.是偶数,是奇数,且 D.是偶数,且
【答案】C
【解析】函数的图象关于轴对称,故为奇数,为偶数,
在第一象限内,函数是凸函数,故,故选:C.
5.(2022·黑龙江·双鸭山一中高三开学考试)已知,则a,b,c大小关系为( )
A. B. C. D.
【答案】A
【解析】因为.所以.
因为.所以.所以.故选:A.
考点三 二次函数根的分布
【例3-1】(2022·全国·高一课时练习)关于x的方程恰有一根在区间内,则实数m的取值范围是( )
A. B. C. D.
【答案】D
【解析】方程对应的二次函数设为:
因为方程恰有一根属于,则需要满足:
①,,解得:;
②函数刚好经过点或者,另一个零点属于,
把点代入,解得:,
此时方程为,两根为,,而,不合题意,舍去
把点代入,解得:,
此时方程为,两根为,,而,故符合题意;
③函数与x轴只有一个交点,横坐标属于,
,解得,
当时,方程的根为,不合题意;
若,方程的根为,符合题意
综上:实数m的取值范围为
故选:D
【例3-2】(2022·湖北·华中师大一附中 )关于的方程有两个不相等的实数根,且,那么的取值范围是( )
A. B.
C. D.
【答案】D
【解析】当时,即为,不符合题意;
故,即为,
令,
由于关于的方程有两个不相等的实数根,且,
则与x轴有两个交点,且分布在1的两侧,
故时,,即,解得,故,故选:D
【一隅三反】
1.(2022·江苏)已知方程有两个不相等的实数根,且两个实数根都大于2,则实数m的取值范围是( )
A. B.
C. D.
【答案】C
【解析】令
由题可知:
则,即
故选:C
2.(2022·广西·高三阶段练习(理))已知函数,若关于的方程有两个不同的实根, 则实数的取值范围为( )
A. B. C. D.
【答案】A
【解析】当时,函数是增函数,函数值集合是,当时,是减函数,函数值集合是,
关于的方程有两个不同的实根,即函数的图象与直线有两个交点,
在坐标系内作出直线和函数的图象,如图,
观察图象知,当时,直线和函数的图象有两个交点,即方程有两个不同的实根,所以实数的取值范围为.故选:A
3(2022·江苏)方程的两根都大于,则实数的取值范围是_____.
【答案】
【解析】由题意,方程的两根都大于,
令,
可得,即,解得.
故答案为:.
4.(2022贵州)方程在区间内有两个不同的根,的取值范围为__.
【答案】
【解析】令,图象恒过点,
方程0在区间内有两个不同的根,
,解得.
故答案为:
新高考数学一轮复习基础巩固10.4 双曲线(精讲)(含解析): 这是一份新高考数学一轮复习基础巩固10.4 双曲线(精讲)(含解析),共18页。试卷主要包含了双曲线的定义及应用,双曲线的离心率及渐近线,双曲线的标准方程,直线与双曲线的位置关系,弦长与中点弦等内容,欢迎下载使用。
新高考数学一轮复习基础巩固10.3 椭圆(精讲)(含解析): 这是一份新高考数学一轮复习基础巩固10.3 椭圆(精讲)(含解析),共14页。试卷主要包含了椭圆的定义及应用,椭圆的离心率,椭圆的标准方程,直线与椭圆的位置关系,弦长等内容,欢迎下载使用。
新高考数学一轮复习基础巩固10.2 圆的方程(精讲)(含解析): 这是一份新高考数学一轮复习基础巩固10.2 圆的方程(精讲)(含解析),共12页。试卷主要包含了圆的方程,直线与圆的位置关系,圆与圆的位置关系,切线问题等内容,欢迎下载使用。