终身会员
搜索
    上传资料 赚现金
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)
    立即下载
    加入资料篮
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)01
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)02
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)03
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)04
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)05
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)06
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)07
    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)08
    还剩52页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析)

    展开
    这是一份新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,同一个常数,n∈N,a+b,a1+n-1d,n-md,①②⇒③,②③⇒①等内容,欢迎下载使用。

    1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.
    1.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第 项起,每一项与它的前一项的差都等于____ ,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 表示,定义表达式为_______________________ .(2)等差中项由三个数a,A,b组成等差数列,则A叫做a与b的等差中项,且有2A= .
    an-an-1=d(常数)(n≥2,
    2.等差数列的有关公式(1)通项公式:an= .
    (2)前n项和公式:Sn= 或Sn= .
    3.等差数列的常用性质(1)通项公式的推广:an=am+ (n,m∈N*).(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则 .(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为 的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.
    ak+al=am+an
    1.已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列,且公差为p.2.在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.3.等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.4.数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).这里公差d=2A.
    判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(  )(2)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.(  )(3)在等差数列{an}中,若am+an=ap+aq,则m+n=p+q.(  )(4)若无穷等差数列{an}的公差d>0,则其前n项和Sn不存在最大值.(  )
    1.在等差数列{an}中,已知a5=11,a8=5,则a10等于A.-2 B.-1 C.1 D.2
    ∴an=-2n+21.∴a10=-2×10+21=1.
    2.设等差数列{an}的前n项和为Sn,若S4=8,S8=20,则a9+a10+a11+a12等于A.12 B.8 C.20 D.16
    等差数列{an}中,S4,S8-S4,S12-S8仍为等差数列,即8,20-8,a9+a10+a11+a12为等差数列,所以a9+a10+a11+a12=16.
    3.设等差数列{an}的前n项和为Sn.若a1=10,S4=28,则Sn的最大值为___.
    由a1=10,S4=4a1+6d=28,解得d=-2,
    当n=5或6时,Sn最大,最大值为30.
    例1 (1)(2023·开封模拟)已知公差为1的等差数列{an}中, =a3a6,若该数列的前n项和Sn=0,则n等于A.10   B.11   C.12   D.13
    解得a1=-6,n=13.
    (2)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A.3 699块 B.3 474块C.3 402块 D.3 339块
    设每一层有n环,由题意可知从内到外每环之间构成d=9,a1=9的等差数列.由等差数列的性质知Sn,S2n-Sn,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-Sn)=n2d,则9n2=729,得n=9,
    (1)等差数列的通项公式及前n项和公式共涉及五个量a1,n,d,an,Sn,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a1和公差d.
    跟踪训练1 (1)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸
    由题意知,从冬至日起,依次为小寒、大寒等十二个节气日影长构成一个等差数列{an},设公差为d,∵冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,
    ∴芒种日影长为a12=a1+11d=135-11×10=25(寸)=2尺5寸.
    所以3=1+2d,解得d=1.
    例2 (2021·全国甲卷)已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列;②数列{ }是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.
    ①③⇒②.已知{an}是等差数列,a2=3a1.设数列{an}的公差为d,则a2=3a1=a1+d,得d=2a1,
    因为数列{an}的各项均为正数,
    设数列{an}的公差为d,
    所以S1=a1,S2=a1+a2=4a1.
    所以Sn=n2d2,所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),是关于n的一次函数,且a1=d2满足上式,所以数列{an}是等差数列.
    判断数列{an}是等差数列的常用方法(1)定义法.(2)等差中项法.(3)通项公式法.(4)前n项和公式法.
    跟踪训练2 已知数列{an}的各项都是正数,n∈N*.(1)若{an}是等差数列,公差为d,且bn是an和an+1的等比中项,设cn= - ,n∈N*,求证:数列{cn}是等差数列;
    因此cn+1-cn=2d(an+2-an+1)=2d2(常数),∴{cn}是等差数列.
    ∵an+an-1>0,∴an-an-1=1,∴数列{an}是首项为1,公差为1的等差数列,可得an=n.
    例3 (1)已知在等差数列{an}中,若a8=8且lg2( )=22,则S13等于A.40   B.65   C.80   D.40+lg25
    命题点1 等差数列项的性质
    (2)已知数列{an},{bn}都是等差数列,且a1=2,b1=-3,a7-b7=17,则a2 024-b2 024的值为________.
    令cn=an-bn,因为{an},{bn}都是等差数列,所以{cn}也是等差数列.设数列{cn}的公差为d,由已知,得c1=a1-b1=5,c7=17,则5+6d=17,解得d=2.故a2 024-b2 024=c2 024=5+2 023×2=4 051.
    等差数列项的性质的关注点(1)在等差数列题目中,只要出现项的和问题,一般先考虑应用项的性质.
    跟踪训练3 (1)若等差数列{an}的前15项和S15=30,则2a5-a6-a10+a14等于A.2 B.3 C.4 D.5
    ∴a1+a15=4,∴2a8=4,∴a8=2.∴2a5-a6-a10+a14=a4+a6-a6-a10+a14=a4-a10+a14=a10+a8-a10=a8=2.
    所以a6=0,a3+a9=2a6=0,因为a5≠0,a6=0,
    命题点2 等差数列前n项和的性质
    由题意可知b3+b13=b5+b11=b1+b15=2b8,
    (2)已知等差数列{an}共有(2n+1)项,其中奇数项之和为290,偶数项之和为261,则an+1的值为A.30 B.29 C.28 D.27
    ∴(n+1)an+1=290.
    ∴an+1=290-261=29.
    等差数列前n项和的常用的性质是:在等差数列{an}中,数列Sm,S2m-Sm,S3m-S2m,…也是等差数列,且有S2n=n(a1+a2n)=…=n(an+an+1);S2n-1=(2n-1)an.
    跟踪训练4 (1)设等差数列{an}的前n项和为Sn,若S4=20,S5=30,am=40,则m等于A.6   B.10   C.20   D.40
    由S4=20,S5=30,得a5=S5-S4=10,由等差数列的性质,得S5=30=5a3,故a3=6,而a5-a3=10-6=4=2d,故d=2,am=40=a5+2(m-5),解得m=20.
    A.2 023 B.-2 023C.4 046 D.-4 046
    ∴S2 023=2 023×2=4 046,故选C.
    1.首项为-21的等差数列从第8项起为正数,则公差d的取值范围是
    an=-21+(n-1)d,因为从第8项起为正数,所以a7=-21+6d≤0,a8=-21+7d>0,
    2.设Sn是等差数列{an}的前n项和,若S50-S47=12,则S97等于A.198 D.2 023
    ∵S50-S47=a48+a49+a50=12,∴a49=4,
    3.已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为A.28 D.31
    设等差数列{an}共有2n+1项,则S奇=a1+a3+a5+…+a2n+1,S偶=a2+a4+a6+…+a2n,该数列的中间项为an+1,又S奇-S偶=a1+(a3-a2)+(a5-a4)+…+(a2n+1-a2n)=a1+d+d+…+d=a1+nd=an+1,所以an+1=S奇-S偶=319-290=29.
    4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,……,依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”,……,依此类推.1911年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革命”.1949年新中国成立,请推算新中国成立的年份为A.己丑年   B.己酉年   C.丙寅年   D.甲寅年
    根据题意可得,天干是以10为公差的等差数列,地支是以12为公差的等差数列,从1911年到1949年经过38年,且1911年为“辛亥”年,以1911年的天干和地支分别为首项,则38=3×10+8,则1949年的天干为己,38=12×3+2,则1949年的地支为丑,所以1949年为己丑年.
    5.设Sn为等差数列{an}的前n项和,若3a5=7a11,且a1>0.则使Sn<0的n的最小值为A.30 D.33
    根据题意,设等差数列{an}的公差为d,若3a5=7a11,且a1>0,则3(a1+4d)=7(a1+10d),
    若Sn<0,必有n2-30n>0,又由n∈N*,则n>30,故使Sn<0的n的最小值为31.
    整理得2b2=a2+c2,即a2,b2,c2依次成等差数列,
    这些数列都不一定是等差数列,除非a=b=c,但题目中未说明△ABC是等边三角形.
    7.(2022·全国乙卷)记Sn为等差数列{an}的前n项和.若2S3=3S2+6,则公差d=______.
    由2S3=3S2+6,可得2(a1+a2+a3)=3(a1+a2)+6,化简得2a3=a1+a2+6,即2(a1+2d)=2a1+d+6,解得d=2.
    8.设Sn是等差数列{an}的前n项和,S10=16,S100-S90=24,则S100=_____.
    依题意,S10,S20-S10,S30-S20,…,S100-S90依次成等差数列,设该等差数列的公差为d.又S10=16,S100-S90=24,因此S100-S90=24=16+(10-1)d=16+9d,
    9.已知{an}是公差为d的等差数列,其前n项和为Sn,且a5=1,________.若存在正整数n,使得Sn有最小值.从①a3=-1,②d=2,③d=-2这三个条件中选择符合题意的一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别解答,则按第一个解答计分.(1)求{an}的通项公式;
    选择①作为补充条件:因为a5=1,a3=-1,所以d=1,所以an=1+(n-5)×1=n-4(n∈N*).
    选择②作为补充条件:因为a5=1,d=2,所以an=1+(n-5)×2=2n-9(n∈N*).
    不可以选择③作为补充条件.
    (2)求Sn的最小值.
    选择①作为补充条件:由(1)可知a1=-3,
    因为n∈N*,所以当n=3或4时,Sn取得最小值,且最小值为-6.故存在正整数n=3或4,使得Sn有最小值,且最小值为-6.
    选择②作为补充条件:由(1)可知a1=-7,
    所以当n=4时,Sn取得最小值,且最小值为-16.故存在正整数n=4,使得Sn有最小值,最小值为-16.不可以选择③作为补充条件.
    10.在数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).(1)求数列{an}的通项公式;
    ∵an+2-2an+1+an=0,∴an+2-an+1=an+1-an,∴数列{an}是等差数列,设其公差为d,∵a1=8,a4=2,
    ∴an=a1+(n-1)d=10-2n,n∈N*.
    (2)设Tn=|a1|+|a2|+…+|an|,求Tn.
    设数列{an}的前n项和为Sn,则由(1)可得,
    由(1)知an=10-2n,令an=0,得n=5,∴当n>5时,an<0,则Tn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=S5-(Sn-S5)=2S5-Sn=2×(9×5-25)-(9n-n2)=n2-9n+40;
    当n≤5时,an≥0,则Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=9n-n2,
    11.(多选)已知数列{an}是公差不为0的等差数列,前n项和为Sn,满足a1+5a3=S8,下列选项正确的有A.a10=0 B.S10最小C.S7=S12 D.S20=0
    根据题意,数列{an}是等差数列,若a1+5a3=S8,即a1+5a1+10d=8a1+28d,变形可得a1=-9d.又由an=a1+(n-1)d=(n-10)d,得a10=0,故A正确;不能确定a1和d的符号,不能确定S10最小,故B不正确;
    得S7=S12,故C正确;
    因为d≠0,所以S20≠0,故D不正确.
    13.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
    将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{an},则{an}是以1为首项,以6为公差的等差数列,
    14.设等差数列{an}的前n项和为Sn,若S6>S7>S5,则满足SnSn+1<0的正整数n的值为______.
    由S6>S7>S5,得S7=S6+a7S5,所以a7<0,a6+a7>0,
    所以S12S13<0,即满足SnSn+1<0的正整数n的值为12.
    15.将正奇数排成一个三角形阵,按照如图排列的规律,则第15行第3个数为A.213 B.215 C.217 D.219
    则第15行第3个数是数阵的第108个数,即所求数字是首项为1,公差为2的等差数列的第108项,则a108=1+(108-1)×2=215.
    16.对于数列{an},定义Hn= 为{an}的“优值”,已知数列{an}的“优值”Hn=2n+1,记数列{an-20}的前n项和为Sn,则Sn的最小值为A.-70 B.-72C.-64 D.-68
    ∵数列{an}的“优值”Hn=2n+1,
    ∴a1+2a2+…+2n-1an=n·2n+1,∴2n-1an=n·2n+1-(n-1)·2n(n≥2),∴an=4n-2(n-1)=2n+2(n≥2),又a1=4,满足上式,∴an=2n+2(n∈N*),∴an-20=2n-18,
    相关课件

    新高考数学一轮复习讲练课件6.2 等差数列及其前n项和(含解析): 这是一份新高考数学一轮复习讲练课件6.2 等差数列及其前n项和(含解析),共43页。

    新高考数学一轮复习讲练测课件第8章§8.6双曲线 (含解析): 这是一份新高考数学一轮复习讲练测课件第8章§8.6双曲线 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,绝对值,F1F2=2c,x≤-a,x≥a,坐标轴,A1A2,1+∞等内容,欢迎下载使用。

    新高考数学一轮复习讲练测课件第8章§8.5椭圆 (含解析): 这是一份新高考数学一轮复习讲练测课件第8章§8.5椭圆 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,x轴和y轴,a2=b2+c2,命题点2待定系数法,命题点1离心率,因为点P在椭圆C上,即4c2=m2,又因为0e1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map