搜索
    上传资料 赚现金
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)
    立即下载
    加入资料篮
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)01
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)02
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)03
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)04
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)05
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)06
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)07
    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)08
    还剩52页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析)

    展开
    这是一份新高考数学一轮复习讲练测课件第8章§8.7抛物线 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,或22,所以FN=16,解得xM=5,∵MA⊥MB,y2=4x等内容,欢迎下载使用。

    1.掌握抛物线的定义、几何图形、标准方程.2.掌握抛物线的简单几何性质(范围、对称性、顶点、离心率).3.了解抛物线的简单应用.
    1.抛物线的概念把平面内与一个定点F和一条定直线l(l不经过点F)的距离______的点的轨迹叫做抛物线.点F叫做抛物线的______,直线l叫做抛物线的_____.
    2.抛物线的标准方程和简单几何性质
    1.通径:过焦点与对称轴垂直的弦长等于2p.
    判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹是抛物线.(   )(2)方程y=4x2表示焦点在x轴上的抛物线,焦点坐标是(1,0).(   )(3)抛物线既是中心对称图形,又是轴对称图形.(   )(4)以(0,1)为焦点的抛物线的标准方程为x2=4y.(   )
    2.过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于A.9 B.8 C.7 D.6
    抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.
    3.抛物线y2=2px(p>0)上一点M(3,y)到焦点F的距离|MF|=4,则抛物线的方程为A.y2=8x B.y2=4x C.y2=2x D.y2=x
    例1 (1)(2022·全国乙卷)设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|等于
    方法一 由题意可知F(1,0),抛物线的准线方程为x=-1.
    因为|BF|=3-1=2,
    解得y0=±2,所以A(1,2)或A(1,-2).不妨取A(1,2),
    方法二 由题意可知F(1,0),故|BF|=2,所以|AF|=2.因为抛物线的通径长为2p=4,所以AF的长为通径长的一半,所以AF⊥x轴,
    (2)已知点M(20,40)不在抛物线C:y2=2px(p>0)上,抛物线C的焦点为F.若对于抛物线上的一点P,|PM|+|PF|的最小值为41,则p的值等于________.
    当点M(20,40)位于抛物线内时,如图①,过点P作抛物线准线的垂线,垂足为D,则|PF|=|PD|,|PM|+|PF|=|PM|+|PD|.当点M,P,D三点共线时,|PM|+|PF|的值最小.
    当点M(20,40)位于抛物线外时,如图②,当点P,M,F三点共线时,|PM|+|PF|的值最小.
    解得p=22或p=58.当p=58时,y2=116x,点M(20,40)在抛物线内,故舍去.综上,p=42或p=22.
    “看到准线想到焦点,看到焦点想到准线”,许多抛物线问题均可根据定义获得简捷、直观的求解.“由数想形,由形想数,数形结合”是灵活解题的一条捷径.
    (2)若P是抛物线y2=8x上的动点,P到y轴的距离为d1,到圆C:(x+3)2+(y-3)2=4上动点Q的距离为d2,则d1+d2的最小值为________.
    圆C:(x+3)2+(y-3)2=4的圆心为C(-3,3),半径r=2,抛物线y2=8x的焦点F(2,0),因为P是抛物线y2=8x上的动点,P到y轴的距离为d1,到圆C:(x+3)2+(y-3)2=4上动点Q的距离为d2,所以要使d1+d2最小,即P到抛物线的焦点与到圆C的圆心的距离最小,
    如图,连接PF,FC,则d1+d2的最小值为|FC|减去圆的半径,再减去抛物线焦点到原点的距离,
    例2 分别求满足下列条件的抛物线的标准方程.(1)准线方程为2y+4=0;
    准线方程为2y+4=0,即y=-2,故抛物线焦点在y轴的正半轴上,设其方程为x2=2py(p>0).
    (2)过点(3,-4);
    ∵点(3,-4)在第四象限,∴抛物线开口向右或向下,设抛物线的标准方程为y2=2px(p>0)或x2=-2p1y(p1>0).把点(3,-4)的坐标分别代入y2=2px和x2=-2p1y中,得(-4)2=2p·3,32=-2p1·(-4),
    (3)焦点在直线x+3y+15=0上.
    令x=0得y=-5;令y=0得x=-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x2=-20y或y2=-60x.
    求抛物线的标准方程的方法(1)定义法.(2)待定系数法:当焦点位置不确定时,分情况讨论.
    跟踪训练2 (1)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为
    如图,分别过点A,B作准线的垂线,交准线于点E,D,设|BF|=a,则|BC|=2a,由抛物线的定义得|BD|=a,故∠BCD=30°,∴在Rt△ACE中,2|AE|=|AC|,∵|AE|=|AF|=3,|AC|=3+3a,∴3+3a=6,解得a=1,
    因此抛物线的方程为y2=3x.
    则抛物线方程为y2=4x,其准线方程为x=-1.
    例3 (1)在抛物线y2=8x上有三点A,B,C,F为其焦点,且F为△ABC的重心,则|AF|+|BF|+|CF|等于A.6   B.8   C.9   D.12
    由题意得,F为△ABC的重心,
    设点A,B,C的坐标分别为(x1,y1),(x2,y2),(x3,y3),∵抛物线y2=8x,F为其焦点,∴F(2,0),
    ∴x1+x2+x3=6,
    因为AE∥x轴,所以∠EAF=60°,由抛物线的定义可知,|AE|=|AF|,则△AEF为等边三角形,所以∠EFP=∠AEF=60°,则∠PEF=30°,所以|AF|=|EF|=2|PF|=2p=8,得p=4,故A正确;
    因为|AE|=|EF|=2|PF|,且PF∥AE,
    因为∠DAE=60°,所以∠ADE=30°,所以|BD|=2|BM|=2|BF|,故C正确;因为|BD|=2|BF|,
    应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.
    跟踪训练3 (1)(2021·新高考全国Ⅰ)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为_________.
    所以tan∠OPF=tan∠PQF,
    |PF|=p,|PF|2=|OF|·|FQ|,
    易知焦点F的坐标为(4,0),准线l的方程为x=-4,如图,抛物线准线与x轴的交点为A,作MB⊥l于点B,NC⊥l于点C,
    又|CN|=4,|OF|=4,
    2.(2023·榆林模拟)已知抛物线x2=2py(p>0)上的一点M(x0,1)到其焦点的距离为2,则该抛物线的焦点到其准线的距离为A.6 B.4 C.3 D.2
    3.(2023·福州质检)在平面直角坐标系Oxy中,动点P(x,y)到直线x=1的距离比它到定点(-2,0)的距离小1,则P的轨迹方程为A.y2=2x B.y2=4xC.y2=-4x D.y2=-8x
    由题意知动点P(x,y)到直线x=2的距离与到定点(-2,0)的距离相等,由抛物线的定义知,P的轨迹是以(-2,0)为焦点,x=2为准线的抛物线,所以p=4,轨迹方程为y2=-8x.
    4.(2022·北京模拟)设M是抛物线y2=4x上的一点,F是抛物线的焦点,O是坐标原点,若∠OFM=120°,则|FM|等于
    过点M作抛物线的准线l的垂线,垂足为点N,连接FN,如图所示,因为∠OFM=120°,MN∥x轴,则∠FMN=60°,由抛物线的定义可得|MN|=|FM|,所以△FNM为等边三角形,则∠FNM=60°,抛物线y2=4x的准线方程为x=-1,设直线x=-1交x轴于点E,则∠ENF=30°,易知|EF|=2,∠FEN=90°,则|FM|=|FN|=2|EF|=4.
    5.(多选)已知抛物线y2=2px(p>0)的焦点F到准线的距离为4,直线l过点F且与抛物线交于两点A(x1,y1),B(x2,y2),若M(m,2)是线段AB的中点,则下列结论正确的是A.p=4B.抛物线方程为y2=16xC.直线l的方程为y=2x-4D.|AB|=10
    由焦点F到准线的距离为4,根据抛物线的定义可知p=4,故A正确;则抛物线的方程为y2=8x,焦点F(2,0),故B错误;
    若M(m,2)是线段AB的中点,则y1+y2=4,
    ∴直线l的方程为y=2x-4,故C正确;
    又由y1+y2=2(x1+x2)-8=4,得x1+x2=6,∴|AB|=|AF|+|BF|=x1+x2+4=10,故D正确.
    7.如图是抛物线形拱桥,当水面为l时,拱顶离水面2米,水面宽4米.则水位下降1米后,水面宽______米.
    8.(2021·北京)已知抛物线C:y2=4x,焦点为F,点M为抛物线C上的点,且|FM|=6,则M的横坐标是_____,作MN⊥x轴于N,则S△FMN=_______.
    因为抛物线的方程为y2=4x,故p=2且F(1,0),
    9.过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时,|AF|=2.(1)求抛物线C的方程;
    当点A的纵坐标为1时,|AF|=2,
    ∴抛物线C的方程为x2=4y.
    (2)若抛物线C上存在点M(-2,y0),使得MA⊥MB,求直线l的方程.
    ∵点M(-2,y0)在抛物线C上,
    又直线l过点F(0,1),∴设直线l的方程为y=kx+1.
    得x2-4kx-4=0.设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=-4,
    ∴(x1+2)(x2+2)+(y1-1)(y2-1)=0,∴-4+8k+4-4k2=0,解得k=2或k=0.当k=0时,l过点M,不符合题意,∴k=2,∴直线l的方程为y=2x+1.
    10.已知在抛物线C:x2=2py(p>0)的第一象限的点P(x,1)到其焦点的距离为2.(1)求抛物线C的方程和点P的坐标;
    故抛物线的方程为x2=4y,当y=1时,x2=4,又因为x>0,所以x=2,所以点P的坐标为(2,1).
    由题意可得直线l的斜率存在,
    所以Δ=16k2+4(4k+2)>0,x1+x2=4k,x1x2=-4k-2,因为∠APB的角平分线与y轴垂直,所以kPA+kPB=0,
    即x1+x2+4=0,所以k=-1,x1+x2=-4,x1x2=2,
    11.(多选)(2023·唐山模拟)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线r:y2=x,O为坐标原点,一束平行于x轴的光线l1从点  射入,经过r上的点A(x1,y1)反射后,再经r上另一点B(x2,y2)反射后,沿直线l2射出,经过点Q,则下列结论正确的是A.y1y2=-1B.|AB|=C.PB平分∠ABQD.延长AO交直线x= 于点C,则C,B,Q三点共线
    设抛物线的焦点为F,如图所示,
    故△APB为等腰三角形,故∠ABP=∠APB,而l1∥l2,故∠PBQ=∠APB,即∠ABP=∠PBQ,故PB平分∠ABQ,故C正确;
    所以C,B,Q三点共线,故D正确.
    12.(2022·阜宁模拟)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点M是抛物线C上一点,MH⊥l于H,若|MH|=4,∠HFM=60°,则抛物线C的方程为_________.
    因为抛物线上的点到焦点的距离等于到准线的距离,所以|MF|=|MH|=4,又∠HFM=60°,所以△MHF为正三角形,所以|HF|=4,记准线l与x轴交于点Q,则∠QHF=30°,所以p=|QF|=|HF|sin∠QHF=4sin 30°=2,所以该抛物线方程为y2=4x.
    13.(2023·泰州模拟)在平面直角坐标系Oxy中,点A(1,0),B(9,6),动点C在线段OB上,BD⊥y轴,CE⊥y轴,CF⊥BD,垂足分别是D,E,F,OF与CE相交于点P.已知点Q在点P的轨迹上,且∠OAQ=120°,则|AQ|等于
    设P(x,y),则yC=y,
    ∵FC∥y轴,∴△OPE∽△FPC,
    ∴P的轨迹方程为y2=4x在第一象限的部分且0≤x≤9,故A(1,0)为该抛物线的焦点.
    相关课件

    新高考数学一轮复习讲练课件8.6 抛物线(含解析): 这是一份新高考数学一轮复习讲练课件8.6 抛物线(含解析),共43页。

    新高考数学一轮复习讲练测课件第8章§8.5椭圆 (含解析): 这是一份新高考数学一轮复习讲练测课件第8章§8.5椭圆 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,x轴和y轴,a2=b2+c2,命题点2待定系数法,命题点1离心率,因为点P在椭圆C上,即4c2=m2,又因为0e1等内容,欢迎下载使用。

    新高考数学一轮复习讲练测课件第6章§6.5数列求和 (含解析): 这是一份新高考数学一轮复习讲练测课件第6章§6.5数列求和 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,Sn=,na1q=1,常见的裂项技巧,常用求和公式,当n为奇数时,所以-3≤λ≤1,选择①等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map