江苏省各地市2023年中考数学真题分类汇编-02填空题基础题知识点分类
展开江苏省各地市2023年中考数学真题分类汇编-02填空题基础题知识点分类
一.根的判别式(共2小题)
1.(2023•徐州)若关于x的方程x2﹣4x+m=0有两个相等的实数根,则实数m的值为 .
2.(2023•连云港)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是 .
二.配方法的应用(共1小题)
3.(2023•连云港)若W=5x2﹣4xy+y2﹣2y+8x+3(x、y为实数),则W的最小值为 .
三.解分式方程(共1小题)
4.(2023•无锡)方程的解是:x= .
四.坐标与图形性质(共1小题)
5.(2023•连云港)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D的坐标可以表示为 .
五.反比例函数的应用(共1小题)
6.(2023•扬州)某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)的反比例函数,且当V=3m3时,p=8000Pa.当气球内的气体压强大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于 m3.
六.抛物线与x轴的交点(共1小题)
7.(2023•泰州)二次函数y=x2+3x+n的图象与x轴有一个交点在y轴右侧,则n的值可以是 .(填一个值即可)
七.同位角、内错角、同旁内角(共1小题)
8.(2023•镇江)如图,一条公路两次转弯后,和原来的方向相同.第一次的拐角∠ABC是140°,第二次的拐角∠BCD是 °.
八.三角形三边关系(共1小题)
9.(2023•徐州)若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为 (写出一个即可).
九.多边形内角与外角(共1小题)
10.(2023•徐州)正五边形的一个外角等于 °.
一十.切线的性质(共1小题)
11.(2023•徐州)如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= °.
一十一.三角形的内切圆与内心(共1小题)
12.(2023•镇江)《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆径几何?”译文:今有一个直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据勾、股,求得弦长.用勾、股、弦相加作为除数,用勾乘以股,再乘以2作为被除数,商即为该直角三角形内切圆的直径,求得该直径等于 步(注:“步”为长度单位).
一十二.正多边形和圆(共1小题)
13.(2023•连云港)以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则正六边形ABCDEF至少旋转 °.
一十三.圆锥的计算(共2小题)
14.(2023•扬州)用半径为24cm,面积为120πcm2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 cm.
15.(2023•苏州)如图,在▱ABCD中,AB=+1,BC=2,AH⊥CD,垂足为H,AH=.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1﹣r2= .(结果保留根号)
一十四.相似三角形的应用(共1小题)
16.(2023•镇江)如图,用一个卡钳(AD=BC,==)测量某个零件的内孔直径AB,量得CD长度为6cm,则AB等于 cm.
一十五.频数(率)分布直方图(共1小题)
17.(2023•泰州)七(1)班40名同学上周家务劳动时间的频数分布直方图如图所示,设这组数据的中位数为mh,则m 2.6.(填“>”“=”“<”)
一十六.扇形统计图(共1小题)
18.(2023•苏州)小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是 °.
一十七.算术平均数(共1小题)
19.(2023•镇江)一组数据:2、3、3、4、a,它们的平均数为3,则a为 .
一十八.利用频率估计概率(共1小题)
20.(2023•扬州)某种绿豆在相同条件下发芽试验的结果如下:
每批粒数n
2
5
10
50
100
500
1000
1500
2000
3000
发芽的频数m
2
4
9
44
92
463
928
1396
1866
2794
发芽的频率(精确到0.001)
1.000
0.800
0.900
0.880
0.920
0.926
0.928
0.931
0.933
0.931
这种绿豆发芽的概率的估计值为 (精确到0.01).
江苏省各地市2023年中考数学真题分类汇编-02填空题基础题知识点分类
参考答案与试题解析
一.根的判别式(共2小题)
1.(2023•徐州)若关于x的方程x2﹣4x+m=0有两个相等的实数根,则实数m的值为 4 .
【答案】4.
【解答】解:根据题意得Δ=(﹣4)2﹣4m=0,
解得m=4.
故答案为:4.
2.(2023•连云港)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是 a<1 .
【答案】见试题解答内容
【解答】解:根据题意得Δ=4﹣4a>0,
解得a<1.
故答案为a<1.
二.配方法的应用(共1小题)
3.(2023•连云港)若W=5x2﹣4xy+y2﹣2y+8x+3(x、y为实数),则W的最小值为 ﹣2 .
【答案】﹣2.
【解答】解:W=5x2﹣4xy+y2﹣2y+8x+3
=x2+4x2﹣4xy+y2﹣2y+8x+3
=4x2﹣4xy+y2﹣2y+x2+8x+3
=(4x2﹣4xy+y2)﹣2y+x2+8x+3
=(2x﹣y)2﹣2y+x2+4x+4x+3
=(2x﹣y)2+4x﹣2y+x2+4x+3
=(2x﹣y)2+2(2x﹣y)+1﹣1+x2+4x+4﹣4+3
=[(2x﹣y)2+2(2x﹣y)+1]+(x2+4x+4)﹣2
=(2x﹣y+1)2+(x+2)2﹣2,
∵x,y均为实数,
∴(2x﹣y+1)2≥0,(x+2)2≥0,
∴原式W≥﹣2,
即原式的W的最小值为:﹣2,
解法二:由题意5x2+(8﹣4y)x+(y2﹣2y+3﹣W)=0,
∵x为实数,
∴(8﹣4y)2﹣20(y2﹣2y+3﹣W)≥0,
即5W≥(y+3)2﹣10≥﹣10,
∴W≥﹣2,
∴W的最小值为:﹣2,
故答案为:﹣2.
三.解分式方程(共1小题)
4.(2023•无锡)方程的解是:x= ﹣1 .
【答案】见试题解答内容
【解答】解:,
3(x﹣1)=2(x﹣2),
解得:x=﹣1,
检验:当x=﹣1时,(x﹣1)(x﹣2)≠0,
∴x=﹣1是原方程的根,
故答案为:﹣1.
四.坐标与图形性质(共1小题)
5.(2023•连云港)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D的坐标可以表示为 (3,150°) .
【答案】(3,150°).
【解答】解:∵点D与圆心的距离为3,射线OD与x轴正方向之间的夹角为150°,
∴点D的坐标为(3,150°).
故答案为:(3,150°).
五.反比例函数的应用(共1小题)
6.(2023•扬州)某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)的反比例函数,且当V=3m3时,p=8000Pa.当气球内的气体压强大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于 0.6 m3.
【答案】0.6.
【解答】解:设气球内气体的压强p(Pa)与气球体积V(m3)之间的函数解析式为P=.
∵当V=3m3时,p=8000Pa,
∴k=Vp=3×80000=24000,
∴p=,
∵气球内的气压大于40000Pa时,气球将爆炸,
∴p≤40000时,气球不爆炸,
∴≤40000,
解得:V≥0.6,
∴为确保气球不爆炸,气球的体积应不小于0.6m3.
故答案为:0.6.
六.抛物线与x轴的交点(共1小题)
7.(2023•泰州)二次函数y=x2+3x+n的图象与x轴有一个交点在y轴右侧,则n的值可以是 ﹣3(答案不唯一) .(填一个值即可)
【答案】﹣3(答案不唯一).
【解答】解:设二次函数y=x2+3x+n的图象与x轴交点的横坐标为x1、x2,
即二元一次方程x2+3x+n=0的根为x1、x2,
由根与系数的关系得:x1+x2=﹣3,x1•x2=n,
∵一次函数y=x2+3x+n的图象与x轴有一个交点在y轴右侧,
∴x1,x2为异号,
∴n<0,
故答案为:﹣3(答案不唯一).
七.同位角、内错角、同旁内角(共1小题)
8.(2023•镇江)如图,一条公路两次转弯后,和原来的方向相同.第一次的拐角∠ABC是140°,第二次的拐角∠BCD是 140 °.
【答案】140.
【解答】解:∵道路是平行的,
∴∠ABC=∠BCD=140°(两直线平行,内错角相等).
故答案为:140.
八.三角形三边关系(共1小题)
9.(2023•徐州)若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为 3或4或5或6或7(答案不唯一) (写出一个即可).
【答案】3或4或5或6或7(答案不唯一).
【解答】解:设三角形的第三边长为x,
则5﹣3<x<5+3,即2<x<8,
∵第三边的长为整数,
∴x=3或4或5或6或7.
故答案为:3或4或5或6或7(答案不唯一).
九.多边形内角与外角(共1小题)
10.(2023•徐州)正五边形的一个外角等于 72 °.
【答案】见试题解答内容
【解答】解:正五边形的一个外角==72°,
故答案为:72.
一十.切线的性质(共1小题)
11.(2023•徐州)如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= 66 °.
【答案】66.
【解答】解:如图,连接OC,OD,
∵BF是⊙O的切线,AB是⊙O的直径,
∴OB⊥BF,
∴∠ABF=90°,
∵∠AFB=68°,
∴∠BAF=90°﹣∠AFB=22°,
∴∠BOD=2∠BAF=44°,
∵,
∴∠COA=2∠BOD=88°,
∴∠CDA=,
∵∠DEB是△AED的一个外角,
∴∠DEB=∠BAF+∠CDA=66°,
故答案为:66.
一十一.三角形的内切圆与内心(共1小题)
12.(2023•镇江)《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆径几何?”译文:今有一个直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据勾、股,求得弦长.用勾、股、弦相加作为除数,用勾乘以股,再乘以2作为被除数,商即为该直角三角形内切圆的直径,求得该直径等于 6 步(注:“步”为长度单位).
【答案】6.
【解答】解:根据勾股定理得:斜边为=17,
则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,
故答案为:6.
一十二.正多边形和圆(共1小题)
13.(2023•连云港)以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则正六边形ABCDEF至少旋转 60 °.
【答案】60°.
【解答】解:∵多边形ABCDEF是正六边形,
∴∠BCD=120°,
要使新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,
则∠DCD'至少为60°,则正六边形ABCDEF至少旋转60°.
故答案为:60°.
一十三.圆锥的计算(共2小题)
14.(2023•扬州)用半径为24cm,面积为120πcm2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 5 cm.
【答案】5.
【解答】解:设圆锥的底面圆的半径为rcm,
则×2πr×24=120π,
解得:r=5,
故答案为:5.
15.(2023•苏州)如图,在▱ABCD中,AB=+1,BC=2,AH⊥CD,垂足为H,AH=.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1﹣r2= .(结果保留根号)
【答案】.
【解答】解:在▱ABCD中,AB=+1,BC=2,
∴AD=BC=2,CD=AB=+1,AB∥CD.
∵AH⊥CD,垂足为H,AH=,
∴sinD==,
∴∠D=60°,
∴∠DAH=90°﹣∠D=30°,
∴DH=AD=1,
∴CH=CD﹣DH=+1﹣1=,
∴CH=AH,
∵AH⊥CD,
∴△ACH是等腰直角三角形,
∴∠ACH=∠CAH=45°,
∵AB∥CD,
∴∠BAC=∠ACH=45°,
∴=2πr1,解得r1=,
=2πr2,解得r2=,
∴r1﹣r2=﹣=.
故答案为:.
一十四.相似三角形的应用(共1小题)
16.(2023•镇江)如图,用一个卡钳(AD=BC,==)测量某个零件的内孔直径AB,量得CD长度为6cm,则AB等于 18 cm.
【答案】18.
【解答】解:∵==,∠COD=∠AOB,
∴△COD∽△AOB,
∴AB:CD=3,
∵CD=6cm,
∴AB=6×3=18(cm),
故答案为:18.
一十五.频数(率)分布直方图(共1小题)
17.(2023•泰州)七(1)班40名同学上周家务劳动时间的频数分布直方图如图所示,设这组数据的中位数为mh,则m < 2.6.(填“>”“=”“<”)
【答案】<.
【解答】解:因为有40个数据,中位数应是数据有小到大排列第20、21个数据的平均数,
由频数分布直方图可知:第1﹣5组的人数分别为5,7,12,9,7,
所以第20、21个数据都在第3组,即2.0~2.5,这两个数的平均数一定小于2.6,
故答案为:<.
一十六.扇形统计图(共1小题)
18.(2023•苏州)小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是 72 °.
【答案】72.
【解答】解:新材料”所对应扇形的圆心角度数是:360°×20%=72°.
故答案为:72.
一十七.算术平均数(共1小题)
19.(2023•镇江)一组数据:2、3、3、4、a,它们的平均数为3,则a为 3 .
【答案】3.
【解答】解:由题意(2+3+3+4+a)=3,
∴a=3.
故答案为:3.
一十八.利用频率估计概率(共1小题)
20.(2023•扬州)某种绿豆在相同条件下发芽试验的结果如下:
每批粒数n
2
5
10
50
100
500
1000
1500
2000
3000
发芽的频数m
2
4
9
44
92
463
928
1396
1866
2794
发芽的频率(精确到0.001)
1.000
0.800
0.900
0.880
0.920
0.926
0.928
0.931
0.933
0.931
这种绿豆发芽的概率的估计值为 0.93 (精确到0.01).
【答案】见试题解答内容
【解答】解:根据表中的发芽的频率,当实验次数的增多,发芽的频率越来越稳定在0.93左右,所以可估计这种绿豆发芽的机会大约是0.93.
故答案为:0.93.
湖北省各地市2023中考数学真题分类汇编02填空题(基础题)知识点分类①: 这是一份湖北省各地市2023中考数学真题分类汇编02填空题(基础题)知识点分类①,共13页。试卷主要包含了2=0,则= ,计算,0的结果是 ,0﹣2cs60°= ,+1= 等内容,欢迎下载使用。
湖北省各地市2023中考数学真题分类汇编02填空题(基础题)知识点分类②: 这是一份湖北省各地市2023中考数学真题分类汇编02填空题(基础题)知识点分类②,共18页。试卷主要包含了×2= 等内容,欢迎下载使用。
湖北省各地市2023中考数学真题分类汇编02填空题(提升题)知识点分类: 这是一份湖北省各地市2023中考数学真题分类汇编02填空题(提升题)知识点分类,共29页。试卷主要包含了的图象上,其中a>b>0,三点,且n≥3等内容,欢迎下载使用。