年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学一轮复习课时跟踪检测(五十五)随机事件的概率、古典概型(含解析)

    新高考数学一轮复习课时跟踪检测(五十五)随机事件的概率、古典概型(含解析)第1页
    新高考数学一轮复习课时跟踪检测(五十五)随机事件的概率、古典概型(含解析)第2页
    新高考数学一轮复习课时跟踪检测(五十五)随机事件的概率、古典概型(含解析)第3页
    还剩4页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课时跟踪检测(五十五)随机事件的概率、古典概型(含解析)

    展开

    这是一份新高考数学一轮复习课时跟踪检测(五十五)随机事件的概率、古典概型(含解析),共7页。试卷主要包含了基础练——练手感熟练度,综合练——练思维敏锐度等内容,欢迎下载使用。
    课时跟踪检测(五十五)  随机事件的概率、古典概型一、基础练——练手感熟练度1.在下列六个事件中,随机事件的个数为(  )如果ab都是实数,那么abba从分别标有数字1,2,3,4,5,6,7,8,9,1010张号签中任取一张,得到4号签;没有水分,种子发芽;某电话总机在60秒内接到至少10次呼叫;在标准大气压下,水的温度达到50 时沸腾;同性电荷,相互排斥.A2  B3C4  D5解析:A ①⑥是必然事件;③⑤是不可能事件;②④是随机事件.故选A.2.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.3,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为(  )A0.2  B0.3C0.7  D0.8解析:A 由题意得,身高超过175 cm的概率为P10.30.50.2,故选A.3.某单位安排甲去参加周一至周五的公益活动,需要从周一至周五选择三天参加活动,那么甲连续三天参加活动的概率为(  )A.  BC.  D解析:A 由题意,某单位安排甲去参加周一至周五的公益活动,需要从周一至周五选择三天参加活动,共有10种不同的安排方式,其中甲连续三天参加活动的有:(周一、二、三)(周二、三、四)(周三、四、五),共有3种不同的方式,所以甲连续三天参加活动的概率为P,故选A.4(多选)12020个整数中随机选择一个数,设事件A表示选到的数能被2整除,事件B表示选到的数能被3整除,则对下列事件概率描述正确的是(  )AP(A)  BP(AB)CP(AB)  DP()解析:ABD 依题意得样本空间的样本点,总数为20,事件A的样本点包括2,4,6,8,10,12,14,16,18,20,共10个,所以P(A),故A正确;事件AB表示的是这个数既能被2整除也能被3整除,其样本点包括6,12,18,共3个,所以P(AB),故B正确;事件AB表示的是这个数能被2整除或能被3整除,其样本点包括2,3,4,6,8,9,10,12,14,15,16,18,20,共13个,所以P(AB),故C错误;事件表示的是这个数既不能被2整除也不能被3整除,其样本点包括1,5,7,11,13,17,19,共7个,故P(),故D正确,故选ABD.5.公元五世纪,数学家祖冲之估计圆周率的值的范围是3.141 592 6<π<3.141 592 7.为纪念祖冲之在圆周率上的成就,把3.141 592 6称为祖率,这是中国数学的伟大成就.某小学教师为帮助同学们了解祖率,让同学们从小数点后的7位数字1,4,1,5,9,2,6中随机选取2位数字,整数部分3不变,那么得到的数大于3.14的概率为(  )A.  BC.  D解析:A 选择数字的总的方法有5×6131(),其中得到的数不大于3.14的数为3.11,3.12,3.14,所以得到的数大于3.14的概率为P1.故选A. 二、综合练——练思维敏锐度1(2020·新高考全国卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是(  )A62%  B56%C46%  D42%解析:C 设事件A为喜欢足球,事件B为喜欢游泳,则由题意可知P(AB)96%P(A)60%P(B)82%.P(AB)P(A)P(B)P(AB),可得P(AB)46%所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.2(2019·全国卷)我国古代典籍《周易》用描述万物的变化,每一重卦由从下到上排列的6个爻组成,爻分为阳爻——和阴爻— —,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是(  )A.  BC.  D解析:A 在所有重卦中随机取一重卦,其基本事件总数n2664,恰有3个阳爻的基本事件数为CC20,所以在所有重卦中随机取一重卦,该重卦恰有3个阳爻的概率P.3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率为.则从中任意取出2粒恰好是同一颜色的概率为(  )A.  BC.  D1解析:C 设从中取出2粒都是黑子为事件A从中取出2粒都是白子为事件B任意取出2粒恰好是同一色为事件C,则CAB,且事件AB互斥.所以P(C)P(A)P(B),即任意取出2粒恰好是同一颜色的概率为.4.有3个不相识的人某天各自乘同一列火车外出,假设火车有10节车厢,那么至少有2人在同一节车厢的概率为(  )A.  BC.  D解析:B 因为3人分别在3节车厢的概率为P,从而由对立事件的概率可得所求概率为P1,故选B.5.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为(  )A.  BC.  D解析:C 从正方形四个顶点及其中心这5个点中任取2个点,共有C10种情况,满足两点间的距离不小于正方形边长的有C6种,故所求概率P.6.如图,《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝丫不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿且乙不模仿的概率是(  )A.  BC.  D解析:B 依题意,基本事件的总数为A24,设事件A表示甲不模仿且乙不模仿若甲模仿,则A包含1×A6个基本事件;若甲模仿,则A包含2×2×A8个基本事件,综上可知A包含6814个基本事件,所以P(A),故选B.7.著名的3N1猜想是指对于每一个正整数n,若n是偶数,则让它变成;若n是奇数,则让它变成3n1.如此循环,最终都会变成1.若数字5,6,7,8,9按照以上猜想进行变换,则变换次数为奇数的概率为(  )A.  BC.  D解析:C 依题意知,5168421,共进行5次变换;63105→…,共进行8次变换;7221134175226134020105→…,共进行16次变换;由以上可知,8变换共需要3次;928147→…,共进行19次变换.故变换次数为奇数的概率为.8(多选)已知m{1,2,3,4}n{2,3,6,8},设向量p(mn),且a(3,6)b(2        1),则下列结论正确的是(  )A.满足|p|的概率为B.满足pa共线的概率为C.满足pb的概率与pa共线的概率相同D.满足p·(ab)50的概率为解析:BC 依题意,向量p(mn)的所有基本事件如表所示:p(mn)23681(1,2)(1,3)(1,6)(1,8)2(2,2)(2,3)(2,6)(2,8)3(3,2)(3,3)(3,6)(3,8)4(4,2)(4,3)(4,6)(4,8) 16个.对于A,由|p|,得m2n213,满足事件的基本事件只有(2,3)(3,2),则其概率为P,故A错误;对于B,由pa共线,得6m3n0,即2mn,满足事件的基本事件有(1,2)(3,6)(4,8),则其概率为,故B正确;对于C,由pb,得2mn0,所以其概率为,故C正确;对于D,由p·(ab)50,得5(mn)50,即mn10,满足事件的基本事件有(2,8)(4,6),其概率为P,故D错误,故选BC.9.从1,2,3,4中选取两个不同数字组成一个两位数,则这个两位数能被3整除的概率为________解析:从1,2,3,4中选取两个不同的数字组成的所有两位数为:12,13,14,21,23,24,31,32,34,41,42,43,共计12个基本事件,其中能被3整除的有:12,21,24,42,共有4个基本事件,所以这个两位数能被3整除的概率为P.答案10(2021·南宁一模)01两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为______     解析5个格子用01两个数字随机填入共有2532种不同方法,从左到右数,不管数到哪个格子,总是1的个数不少于0的个数包含的基本事件有:全是1,有1种方法;第一个格子是1,另外4个格子有一个0,有4种方法;第一个格子是1,另外4个格子有20,有5种方法,所以共有14510种基本方法,那么概率P.答案11.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.   商品 顾客人数   100×217××200×300××85×××98×××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为0.2.(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为0.3.(3)(1)同理,可得:顾客同时购买甲和乙的概率可以估计为0.2顾客同时购买甲和丙的概率可以估计为0.6顾客同时购买甲和丁的概率可以估计为0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.12.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50)[50,60)[80,90)[90,100](1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解:(1)因为(0.004a0.0180.022×20.028)×101,所以a0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.0220.018)×100.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×103(),记为A1A2A3;受访职工中评分在[40,50)的有:50×0.004×102(),记为B1B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1A2}{A1A3}{A1B1}{A1B2}{A2A3}{A2B1}{A2B2}{A3B1}{A3B2}{B1B2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1B2},故所求的概率为.13.在某大型活动中,甲、乙等五名志愿者被随机地分到ABCD四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)求五名志愿者中仅有一人参加A岗位服务的概率.解:(1)甲、乙两人同时参加A岗位服务为事件EAP(EA)所以甲、乙两人同时参加A岗位服务的概率是.(2)甲、乙两人同时参加同一岗位服务为事件EP(E)所以甲、乙两人不在同一岗位服务的概率是P()1P(E).(3)因为有两人同时参加A岗位服务的概率P2,所以仅有一人参加A岗位服务的概率P11P2.

    相关试卷

    2024年高考数学一轮复习(新高考方案)课时跟踪检测(五十五) 直线方程及两直线位置关系:

    这是一份2024年高考数学一轮复习(新高考方案)课时跟踪检测(五十五) 直线方程及两直线位置关系,共6页。

    2024年高考数学一轮复习(新高考方案)课时跟踪检测(六十八) 随机事件的概率与古典概型:

    这是一份2024年高考数学一轮复习(新高考方案)课时跟踪检测(六十八) 随机事件的概率与古典概型,共7页。

    高中数学高考课时跟踪检测(五十五) 随机事件的概率、古典概型 作业:

    这是一份高中数学高考课时跟踪检测(五十五) 随机事件的概率、古典概型 作业,共7页。试卷主要包含了基础练——练手感熟练度,综合练——练思维敏锐度等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map