终身会员
搜索
    上传资料 赚现金

    八年级数学上册专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(原卷版).docx
    • 解析
      专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(解析版).docx
    专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(原卷版)第1页
    专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(原卷版)第2页
    专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(原卷版)第3页
    专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(解析版)第1页
    专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(解析版)第2页
    专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(解析版)第3页
    还剩15页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级上册13.1.1 轴对称同步训练题

    展开

    这是一份人教版八年级上册13.1.1 轴对称同步训练题,文件包含专题132轴对称的性质八大题型举一反三人教版原卷版docx、专题132轴对称的性质八大题型举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。



    TOC \ "1-3" \h \u
    \l "_Tc9984" 【题型1 游戏中的轴对称】 PAGEREF _Tc9984 \h 1
    \l "_Tc16977" 【题型2 利用轴对称的性质求角度】 PAGEREF _Tc16977 \h 3
    \l "_Tc29150" 【题型3 利用轴对称的性质求线段长度】 PAGEREF _Tc29150 \h 4
    \l "_Tc18917" 【题型4 在格点中作轴对称图形】 PAGEREF _Tc18917 \h 6
    \l "_Tc3130" 【题型5 利用轴对称的性质解决折叠问题】 PAGEREF _Tc3130 \h 8
    \l "_Tc10927" 【题型6 利用轴对称的性质解决最短路径问题】 PAGEREF _Tc10927 \h 11
    \l "_Tc4325" 【题型7 利用轴对称的性质解决探究性问题】 PAGEREF _Tc4325 \h 13
    \l "_Tc948" 【题型8 轴对称图案的设计】 PAGEREF _Tc948 \h 18
    【知识点1 轴对称的性质】
    (1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
    由轴对称的性质得到一下结论:
    ①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;
    ②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这
    两个图形的对称轴.
    (2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.
    【题型1 游戏中的轴对称】
    【例1】(2022春•余姚市校级月考)小王设计了一“对称跳棋”题:如图,在作业本上画一条直线l,在直线l两边各放一粒围棋子A、B,使线段AB长8cm,并关于直线l对称,在图中P1处有一粒跳棋子,P1距A点6cm、与直线l的距离为3cm,按以下程序起跳:第1次,从P1点以A为对称中心跳至P2点;第2次,从P2点以l为对称轴跳至P3点;第3次,从P3点以B为对称中心跳至P4点;第4次,从P4点以l对称轴跳至P5点;….
    (1)棋子跳至P6点时,与点P1的距离是 ;
    (2)棋子按上述程序跳跃2014次后停下,这时它与点B的距离是 .
    【变式1-1】(2022•云梦县一模)甲和乙下棋,甲执白子,乙执黑子.如图,已共下了7枚棋子,棋盘中心黑子的位置用(﹣1,0)表示,其右下角黑子的位置用(0,﹣1)表示.甲将第4枚白子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是( )
    A.(﹣1,1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,﹣2)
    【变式1-2】(2022•潍坊)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是( ),[说明:棋子的位置用数对表示,如A点在(6,3)].
    A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)
    C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)
    【变式1-3】(2022•绥棱县校级模拟)如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为 3 步.
    【题型2 利用轴对称的性质求角度】
    【例2】(2022秋•河东区期末)如图,△ABC中,∠B=58°,∠C=55°,点D为BC边上一动点.分别作点D关于AB,AC的对称点E,F,连接AE,AF.则∠EAF的度数等于 .
    【变式2-1】(2022春•寿阳县期末)如图,△ABC中,∠B=60°,∠C=50°,点D是BC上任一点,点E和点F分别是点D关于AB和AC的对称点,连接AE和AF,则∠EAF的度数是( )
    A.140°B.135°C.120°D.100°
    【变式2-2】(2022秋•台江区期中)如图,四边形ABCD中,AB=AD,△ABC沿着AC翻折,点B关于AC的对称点E恰好落在CD上,若∠B=α度,则∠D的度数是 度.
    【变式2-3】(2022秋•房山区期末)如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度数.
    【题型3 利用轴对称的性质求线段长度】
    【例3】(2022秋•土默特左旗期中)如图,点P在∠AOB内,点M、N分别是点P关于AO、BO的对称点,若△PEF的周长为15,求MN的长.
    【变式3-1】(2022春•洛宁县期末)如图,点P在∠AOB内,点M、N分别是P点关于OA、OB的对称点,且MN交OA、OB相交于点E,若△PEF的周长为20,求MN的长.
    【变式3-2】(2022春•驿城区期末)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=3cm,PN=4cm,MN=4.5cm,则线段QR的长为 .
    【变式3-3】(2022秋•淮安月考)如图,在△ABC中,AB=12cm,AC=6cm,BC=10cm,点D,E分别在AC,AB上,且△BCD和△BED关于BD对称.
    (1)求AE的长;
    (2)求△ADE的周长.
    【题型4 在格点中作轴对称图形】
    【例4】(2022秋•密山市校级期末)如图所示,
    (1)写出顶点C的坐标;
    (2)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;
    (3)若点A2(a,b)与点A关于x轴对称,求a﹣b的值.
    【变式4-1】(2022秋•自贡期末)如图,在直角坐标系中,A、B、C、D各点的坐标分别为(﹣7,7)、(﹣7,1)、(﹣3,1)、(﹣1,4).
    (1)在给出的图形中,画出四边形ABCD关于y轴对称的四边形A1B1C1D1; (不写作法)
    (2)写出点A1和C1的坐标;
    (3)求四边形A1B1C1D1的面积.
    【变式4-2】(2022秋•嵊州市期末)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A,B的坐标分别是(﹣6,7),(﹣4,3).
    (1)请你根据题意在图中的网格平面内作出平面直角坐标系.
    (2)请画出△ABC关于y轴对称的△A1B1C1
    【变式4-3】(2022春•铜仁市期末)如图,已知点A(4,3),B(3,1),C(1,2),请解决下列问题:
    (1)若把△ABC向下平移1个单位,再向左平移5个单位得到△A1B1C1,请画出平移后的图形并写出A1,B1,C1的坐标;
    (2)若△A2B2C2是△ABC关于x轴对称的图形,请画出△A2B2C2并写出A2,B2,C2的坐标.
    【题型5 利用轴对称的性质解决折叠问题】
    【例5】(2022春•广陵区校级期中)发现(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A有何数量关系,直接写出你的结论,不必说明理由
    思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=100°,求∠BIC的度数;
    拓展(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.
    【变式5-1】(2022春•杜尔伯特县期中)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN.
    (1)求线段CN长.
    (2)连接FN,并求FN的长.
    【变式5-2】(2022秋•成都期末)如图,四边形ABCD中,AB∥CD,AD⊥AB,AB=6,AD=CD=3,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在四边形ABCD内部时,PD的最小值等于 .
    【变式5-3】(2022•惠安县期末)如图,已知一张长方形纸片ABCD,AB∥CD,AD=BC=1,AB=CD=5.在长方形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
    (1)请你动手操作,判断△MNK的形状一定是 ;
    (2)问△MNK的面积能否小于12?试说明理由;
    (3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,并求最大值.
    【题型6 利用轴对称的性质解决最短路径问题】
    【例6】(2022春•崂山区期中)早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.
    将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.
    大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.
    如图2,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.
    证明:如图3,在直线l上另取任一点C′,连接AC′,BC′,B′C′,
    ∵直线l是点B,B′的对称轴,点C,C′在l上,
    ∴CB=CB′,C′B=C′B′,
    ∴AC+CB=AC+ = .
    在△AC′B′中,
    ∵AB′<AC′+C′B′
    ∴AC+CB<AC′+C′B′即AC+CB最小.
    本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(其中C在AB′与l的交点上,即A、C、B′三点共线).本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型.
    【简单应用】
    (1)如图4,在等边△ABC中,AB=6,AD⊥BC,E是AC的中点,M是AD上的一点,求EM+MC的最小值
    借助上面的模型,由等边三角形的轴对称性可知,B与C关于直线AD对称,连接BM,EM+MC的最小值就是线段 BE 的长度,则EM+MC的最小值是 ;
    (2)如图5,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M、N当△AMN周长最小时,∠AMN+∠ANM= °.
    【拓展应用】
    如图6,是一个港湾,港湾两岸有A、B两个码头,∠AOB=30°,OA=1千米,OB=2千米,现有一艘货船从码头A出发,根据计划,货船应先停靠OB岸C处装货,再停靠OA岸D处装货,最后到达码头B.怎样安排两岸的装货地点,使货船行驶的水路最短?请画出最短路线并求出最短路程.
    【变式6-1】在ABC中,∠ACB=90°,∠B=60°,AC=6,点D,E在AB边上,AD=CD,点E关于AC,CD的对称点分别为F,G,则线段FG的最小值等于( )
    A.2B.3C.4D.5
    【变式6-2】(2022秋•双流区校级期中)在△ABC中,∠A=45°,AC=8,BD⊥AC,BD=6,点E为边BC上的一个动点.E1,E2分别为点E关于直线AC,AB的对称点,连接E1E2,则线段E1E2长度的最小值是 .
    【变式6-3】(2022春•青羊区期末)如图,△ABC中,∠B=45°,∠C=75°,AB=4,D为BC上一动点,过D作DE⊥AC于点E,作DF⊥AB于点F,连接EF,则EF的最小值为 .
    【题型7 利用轴对称的性质解决探究性问题】
    【例7】(2022春•二道区期末)解答下列各题:
    (1)【问题引入】:如图①,在△ABC中,∠BAC=70°,点D在BC的延长线上,三角形的内角∠ABC与外角∠ACD的角平分线BP,CP相交于点P,求∠P的度数﹒(写出完整的解答过程)
    (2)【深入探究】:如图②,在四边形MNCB中,设∠M=a,∠N=β,四边形MNCB的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P,则∠P的度数为 ﹒(用含有α和β的代数式表示)
    (3)【问题拓展】:如图③,在图①中,把∠BAC=70°改成∠BAC=γ,其他条件不变,将△PBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M,则∠BMC的度数为 .(用含有γ的代数式表示)
    【变式7-1】(2022秋•洛南县期末)问题提出:
    (1)如图1,画出直角三角形ABC关于AC所在直线的轴对称图形△ACB′,其中∠BAC=90°(保留作图痕迹,不写作法).
    问题探究:
    (2)如图2,∠MAN=90°,射线AE在∠MAN的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,过点C作CF⊥AE于点F,过点B作BD⊥AE于点D,证明:△ABD≌△CAF.
    深入思考:
    (3)如图3,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的异侧,过点A作AD⊥l于点D,过点B作BE⊥l于点E.判断线段AD、BE、DE之间的数量关系,并加以说明.
    【变式7-2】(2022春•临汾期末)综合实践课上,小聪用一张长方形纸片ABCD对不同折法下的夹角大小进行了探究,先将纸片的一角对折,使角的顶点A落在A′处,EF为折痕,如图①所示.
    (1)若∠AEF=30°,
    ①求∠A′EB的度数;
    ②又将它的另一个角也折过去,并使点B落在EA′上的B′处,折痕为EG,如图②所示,求∠FEG的度数;
    (2)若改变∠AEF的大小,则EA′的位置也随之改变,则∠FEG的大小是否改变?请说明理由.
    【变式7-3】(2022秋•鼓楼区月考)问题情境
    如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;如此反复操作,沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,我们就称∠BAC是△ABC的正角.
    以图2为例,△ABC中,∠B=70°,∠C=35°,若沿∠BAC的平分线AB1折叠,则∠AA1B1=70°.沿A1B1剪掉重叠部分,在余下的△B1A1C中,由三角形的内角和定理可知∠A1B1C=35°,若沿∠B1A1C的平分线A1B2第二次折叠,则点B1与点C重合.此时,我们就称∠BAC是△ABC的正角.
    探究发现
    (1)△ABC中,∠B=2∠C,则经过两次折叠后,∠BAC是不是△ABC的正角? (填“是”或“不是”).
    (2)小明经过三次折叠发现∠BAC是△ABC的正角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
    根据以上内容猜想:若经过n次折叠∠BAC是△ABC的正角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
    应用提升
    (3)如果一个三角形的最小角是10°,直接写出此三角形另外两个角的度数,使得此三角形的三个角均是它的正角.
    【题型8 轴对称图案的设计】
    【例8】(2022秋•沧州期末)如图1所示是一块有图案的瓷砖,请利用四块这样的瓷砖拼出一个正方形,使所拼的图案为轴对称图形.在图4中画出你的四个设计方案.(图2、图3视为同一图案)
    【变式8-1】(2022•金华)现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.
    观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.
    请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.
    【变式8-2】(2022春•临渭区期末)认真观察下面四幅图中阴影部分构成的图案,回答下列问题.
    (1)请你写出这四个图案都具有的两个共同特征:
    特征1: ;
    特征2: .
    (2)请你借助下面的网格,设计出三个不同图案,使它也具备你所写出的上述特征.(注意:新图案与以上四幅图中的图案不能相同)
    【变式8-3】(2022秋•盂县期末)有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)

    相关试卷

    初中数学人教版八年级下册17.1 勾股定理巩固练习:

    这是一份初中数学人教版八年级下册17.1 勾股定理巩固练习,共37页。

    中考数学一轮复习 题型举一反三 专题03 分式【八大题型】(举一反三)(2份打包,原卷版+解析版):

    这是一份中考数学一轮复习 题型举一反三 专题03 分式【八大题型】(举一反三)(2份打包,原卷版+解析版),文件包含中考数学一轮复习题型举一反三专题03分式八大题型举一反三原卷版doc、中考数学一轮复习题型举一反三专题03分式八大题型举一反三解析版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        八年级数学上册专题13.2 轴对称的性质【八大题型】(举一反三)(人教版)(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map