- 专题05 圆与圆的对称性压轴题五种模型全攻略-《常考压轴题》2022-2023学年九年级数学上册压轴题攻略(苏科版) 试卷 0 次下载
- 专题06 圆周角压轴题五种模型全攻略-《常考压轴题》2022-2023学年九年级数学上册压轴题攻略(苏科版) 试卷 0 次下载
- 专题08 弧长、扇形的面积与圆锥的侧面积压轴题六种模型全攻略-《常考压轴题》2022-2023学年九年级数学上册压轴题攻略(苏科版) 试卷 0 次下载
- 专题09 平均数、中位数、众数、方差压轴题四种模型全攻略-《常考压轴题》2022-2023学年九年级数学上册压轴题攻略(苏科版) 试卷 0 次下载
- 专题10 等可能条件下的概率压轴题六种模型全攻略-《常考压轴题》2022-2023学年九年级数学上册压轴题攻略(苏科版) 试卷 0 次下载
专题07 直线与圆的位置关系压轴题六种模型全攻略-《常考压轴题》2022-2023学年九年级数学上册压轴题攻略(苏科版)
展开专题07 直线与圆的位置关系压轴题六种模型全攻略
考点一 直线与圆的位置关系 考点二 已知直线与圆的位置关系求半径的求值
考点三 切线的性质定理 考点四 切线的性质和判定的综合应用
考点五 应用切线长定理求解 考点六 应用切线长定理证明
考点一 直线与圆的位置关系
例题:(2022·四川成都·二模)⊙O的直径为8,圆心O到直线a的距离为4,则直线a与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.不能确定
【变式训练】
1.(2022·河北承德·九年级期末)在中,,,以A为圆心2.5为半径作圆.下列结论中正确的是( )
A.直线BC与圆O相切 B.直线BC与相离 C.点B在圆内 D.点C在圆上
2.(2020·全国·九年级期中)已知的直径为6cm,点O到直线a的距离为,则与直线a的位置关系是____________.
考点二 已知直线与圆的位置关系求半径的求值
例题:(2022·浙江宁波·九年级期末)已知圆与直线有两个公共点,且圆心到直线的距离为4,则该圆的半径可能为( )
A.2 B.3 C.4 D.5
【变式训练】
1.(2022·江苏南通·一模)如图,点D是等腰直角△ABC斜边AB上一点,点E是BC上一点,AB=2,DA=DE,则AD的取值范围是____.
2.(2021·河北·金华中学九年级阶段练习)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r为半径的圆与边AB所在直线相离,则r的取值范围为 _____;若⊙C与AB边只有一个有公共点,则r的取值范围为 _____.
考点三 切线的性质定理
例题:(2022·江苏泰州·中考真题)如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在 上,且与点A,B 不重合,若∠P=26°,则∠C的度数为_________°.
【变式训练】
1.(2022·山东德州·九年级期末)如图,PA、PB分别与⊙O相切于A、B,C为⊙O上一点,∠ACB=126°,则∠P的度数为________.
2.(2022·山东威海·九年级期末)如图,PA,PB与⊙O相切于A,B两点,点C在⊙O上,若∠C=70°,则∠P=_____°.
3.(2022·湖北鄂州·中考真题)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )
A.10cm B.15cm C.20cm D.24cm
考点四 切线的性质和判定的综合应用
例题:(2022·辽宁盘锦·模拟预测)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE∥AD与BA的延长线交于点E.
(1)求证:CE与⊙O相切;
(2)若AD=4,∠D=60°,求线段AB,BC的长.
【变式训练】
1.(2022·山东威海·九年级期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,且DC=AD.过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线交AB的延长线于点G.
(1)求证:FG与⊙O相切;
(2)连接EF,若AF=2,求EF的长.
2.(2022·广西·中考真题)如图,在中,,以AC为直径作交BC于点D,过点D作,垂足为E,延长BA交于点F.
(1)求证:DE是的切线
(2)若,求的半径.
3.(2022·福建省福州第十九中学模拟预测)如图,以四边形ABCD的对角线BD为直径作圆,圆心为O,过点A作的延长线于点E,已知DA平分.
(1)求证:是的切线;
(2)若,,求的半径和AD的长.
考点五 应用切线长定理求解
例题:(2022·湖北·武汉一初慧泉中学九年级阶段练习)如图,在四边形中,是四边形的内切圆,分别切于F,E两点,若,则的长是( )
A. B. C. D.
【变式训练】
1.(2022·辽宁·黑山县教师进修学校二模)如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.∠DAC=78°,那么∠AOD等于_____度.
2.(2022·天津河东·二模)已知是直径,,分别切于点,.
(1)如图①,若,求的度数;
(2)如图②,延长到点,使,连接,若,求的度数.
考点六 应用切线长定理证明
例题:(2022·北京·首都师范大学附属中学九年级阶段练习)如图,Rt中,,为上一点,以为圆心,长为半径的圆恰好与相切于点,交于点,连接,并延长交于点.
(1)求证:;
(2)若,,求的半径及的长.
【变式训练】
1.(2022·山东德州·九年级期末)如图,AB、AC为⊙O的切线,B和C是切点,延长OB到点D,使BD=OB,连接AD,若∠DAC=78°,则∠ADO等于( )
A.70° B.64° C.62° D.51°
2.(2022·广东·模拟预测)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.
(1)求证:BC=CD;
(2)若∠C=60°,BC=3,求AD的长.
一、选择题
1.(2022·黑龙江哈尔滨·三模)如图,PA、PC是⊙O的两条切线,点A、C为切点,点B为⊙O上任意一点,连接AB、BC,若∠B=52°,则P的度数为( ).
A.68° B.104° C.70° D.76°
2.(2022·重庆八中二模)如图,OA是⊙О的一条半径,点P是OA延长线上一点,过点P作⊙O的切线PB,点B为切点. 若PA=1,PB=2,则半径OA的长为( )
A. B. C. D.3
3.(2022·重庆·三模)如图,PA、PB是⊙O的切线,A、B是切点,点C在⊙O上,且∠ACB=63°,则∠APB等于( )
A.62° B.54° C.53° D.63°
4.(2022·重庆·模拟预测)如图,PM、PN是⊙O的切线,B、C是切点,A、D是⊙O上的点,若∠P=44°,∠D=98°,则∠MBA的度数为( )
A.38° B.28° C.30° D.40°
5.(2022·山东·临沂市河东区教育科学研究与发展中心二模)如图,在中,,,,是以点为圆心,3为半径的圆上一点,连接,是的中点,则线段长度的最小值为( )
A.3 B.4 C.5 D.6
二、填空题
6.(2022·湖南怀化·中考真题)如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为_____.
7.(2022·浙江·九年级专题练习)如图,切线PA、PB分别与⊙O相切于点A、B,切线EF与⊙O相切于点C,且分别交PA、PB于点E、F,若△PEF的周长为6,则线段PA的长为_____.
8.(2022·江苏·星海实验中学二模)如图,在矩形ABCD中,,,M,N分别是BC,DC边上的点,若经过点A,且与BC,DC分别相切于点M,N,则的半径为______.
9.(2022·江苏南京·二模)如图,在五边形AECDE中,∠A=∠B=∠C=90°,AE=2,CD=1,以DE为直径的半圆分别与AB、BC相切于点F、G,则DE的长为______.
10.(2022·浙江金华·中考真题)如图,木工用角尺的短边紧靠⊙于点A,长边与⊙相切于点B,角尺的直角顶点为C,已知,则⊙的半径为_____.
三、解答题
11.(2022·辽宁葫芦岛·三模)如图,正方形的边长为的直径,E是上一点(不与A,B重合),将正方形的一个角沿折叠,使得点B恰好与圆上的点F重合.
(1)判断直线与的位置关系?并说明理由;
(2)若的半径为1,求的长?
12.(2022·福建·厦门市第五中学二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC延长线于点E,若BC平分∠ACE.
(1)求证:BE是⊙O的切线;
(2)若BE=3,CD=2,求⊙O的半径.
13.(2022·云南昆明·三模)如图,在中,点D是AC边上一点,且,以线段AB为直径作,分别交BD,AC于点E,点F,.
(1)求证:BC是的切线;
(2)若,求点B到AC的距离;
14.(2022·广东茂名·九年级期末)如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,延长CO与AB的延长线交于点D.
(1)求证:AC为的切线;
(2)若,,求线段AD的长.
15.(2022·山东菏泽·一模)如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,延长CO与AB的延长线交于点D.
(1)求证:AC为⊙O的切线;
(2)若OC=2,OD=5,求线段AD和AC的长.
16.(2022·河南南阳·一模)如图,四边形ABCD内接于,AB是的直径,过点D作的切线交BC的延长线于点E,交BA的延长线于点F,且,过点A作的切线交EF于点G,连接AC.
(1)求证:AD平分;
(2)若AD=5,AB=9,求线段DE的长.
17.(2022·四川凉山·中考真题)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6
(1)判断⊙M与x轴的位置关系,并说明理由;
(2)求AB的长;
(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式.
18.(2022·河南商丘·三模)如图,以AB为直径的上有一动点C,的切线CD交AB的延长线于点D,过点B作交于点M,连接AM,OM,BC.
(1)求证:
(2)若,填空:
①当AM= 时,四边形OCBM为菱形;
②连接MD,过点O作于点N,若 ,则ON= .
专题12 图形的位似压轴题六种模型全攻略-【常考压轴题】2022-2023学年九年级数学下册压轴题攻略(苏科版): 这是一份专题12 图形的位似压轴题六种模型全攻略-【常考压轴题】2022-2023学年九年级数学下册压轴题攻略(苏科版),文件包含专题12图形的位似压轴题六种模型全攻略原卷版docx、专题12图形的位似压轴题六种模型全攻略解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
专题07 成比例线段、黄金分割压轴题六种模型全攻略-【常考压轴题】2022-2023学年九年级数学下册压轴题攻略(苏科版): 这是一份专题07 成比例线段、黄金分割压轴题六种模型全攻略-【常考压轴题】2022-2023学年九年级数学下册压轴题攻略(苏科版),文件包含专题07成比例线段黄金分割压轴题六种模型全攻略原卷版docx、专题07成比例线段黄金分割压轴题六种模型全攻略解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
专题10 等可能条件下的概率压轴题六种模型全攻略-《常考压轴题》2022-2023学年九年级数学上册压轴题攻略(苏科版): 这是一份专题10 等可能条件下的概率压轴题六种模型全攻略-《常考压轴题》2022-2023学年九年级数学上册压轴题攻略(苏科版),文件包含专题10等可能条件下的概率压轴题六种模型全攻略原卷版docx、专题10等可能条件下的概率压轴题六种模型全攻略解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。