新高考数学二轮复习考点突破讲义 第2部分 考前回扣 回扣2 复数、平面向量(含解析)
展开这是一份新高考数学二轮复习考点突破讲义 第2部分 考前回扣 回扣2 复数、平面向量(含解析),共2页。试卷主要包含了复数的相关概念及运算法则,复数的几个常见结论,平面向量基本定理,向量a与b的夹角,平面向量的数量积,利用数量积求长度,利用数量积求夹角等内容,欢迎下载使用。
1.复数的相关概念及运算法则
(1)复数z=a+bi(a,b∈R)的分类
①z是实数⇔b=0;
②z是虚数⇔b≠0;
③z是纯虚数⇔a=0且b≠0.
(2)共轭复数
复数z=a+bi(a,b∈R)的共轭复数eq \x\t(z)=a-bi.
(3)复数的模
复数z=a+bi(a,b∈R)的模|z|=eq \r(a2+b2).
(4)复数相等的充要条件
a+bi=c+di⇔a=c且b=d(a,b,c,d∈R).
特别地,a+bi=0⇔a=0且b=0(a,b∈R).
(5)复数的运算法则
加减法:(a+bi)±(c+di)=(a±c)+(b±d)i;
乘法:(a+bi)(c+di)=(ac-bd)+(ad+bc)i;
除法:(a+bi)÷(c+di)=eq \f(ac+bd,c2+d2)+eq \f(bc-ad,c2+d2)i(c+di≠0).(其中a,b,c,d∈R)
2.复数的几个常见结论
(1)(1±i)2=±2i.
(2)eq \f(1+i,1-i)=i,eq \f(1-i,1+i)=-i.
(3)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+i4n+1+i4n+2+i4n+3=0(n∈N).
3.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.
4.向量a与b的夹角
已知两个非零向量a,b,O是平面上的任意一点,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB=θ(0≤θ≤π)叫做向量a与b的夹角.当θ=0时,a与b同向;当θ=π时,a与b反向.如果a与b的夹角是eq \f(π,2),我们说a与b垂直,记作a⊥b.
5.平面向量的数量积
(1)若a,b为非零向量,夹角为θ,则a·b=|a||b|·cs θ.
(2)设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
6.两个非零向量平行、垂直的充要条件
若a=(x1,y1),b=(x2,y2),则
(1)a∥b⇔a=λb(b≠0)⇔x1y2-x2y1=0.
(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.
7.利用数量积求长度
(1)若a=(x,y),则|a|=eq \r(a·a)=eq \r(x2+y2).
(2)若A(x1,y1),B(x2,y2),则
|eq \(AB,\s\up6(→))|=eq \r(x2-x12+y2-y12).
8.利用数量积求夹角
设a,b为非零向量,若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,
则cs θ=eq \f(a·b,|a||b|)=eq \f(x1x2+y1y2,\r(x\\al(2,1)+y\\al(2,1)) \r(x\\al(2,2)+y\\al(2,2))).
9.三角形“四心”向量形式的充要条件
设O为△ABC所在平面上一点,角A,B,C所对的边长分别为a,b,c,则:
(1)O为△ABC的外心⇔|eq \(OA,\s\up6(→))|=|eq \(OB,\s\up6(→))|=|eq \(OC,\s\up6(→))|=eq \f(a,2sin A).
(2)O为△ABC的重心⇔eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→))=0.
(3)O为△ABC的垂心⇔eq \(OA,\s\up6(→))·eq \(OB,\s\up6(→))=eq \(OB,\s\up6(→))·eq \(OC,\s\up6(→))=eq \(OC,\s\up6(→))·eq \(OA,\s\up6(→)).
(4)O为△ABC的内心⇔aeq \(OA,\s\up6(→))+beq \(OB,\s\up6(→))+ceq \(OC,\s\up6(→))=0.
1.复数z为纯虚数的充要条件是a=0且b≠0(z=a+bi,a,b∈R).还要注意巧妙运用参数问题和合理消参的技巧.
2.复数的运算与多项式运算类似,要注意利用i2=-1化简合并同类项.
3.若eq \(AP,\s\up6(→))=λeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)+\f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)))(λ∈(0,+∞)),则点P的轨迹过△ABC的内心.
4.找向量的夹角时,需把向量平移到同一个起点,共起点容易忽视.
相关试卷
这是一份新高考数学二轮复习考点突破讲义 第2部分 考前回扣 回扣5 立体几何与空间向量(含解析),共3页。试卷主要包含了柱、锥、台、球体的表面积和体积,直观图与斜二测画法,平行、垂直关系的转化示意图,用空间向量证明平行、垂直,则有,用向量求空间角等内容,欢迎下载使用。
这是一份新高考数学二轮复习考点突破讲义 第2部分 考前回扣 回扣1 集合、常用逻辑用语、不等式(含解析),共3页。试卷主要包含了集合,一元二次不等式的解法,一元二次不等式的恒成立问题,分式不等式,基本不等式等内容,欢迎下载使用。
这是一份新高考数学二轮复习考点突破讲义 第2部分 考前回扣 回扣7 解析几何(含解析),共3页。试卷主要包含了直线方程的五种形式,直线的两种位置关系,三种距离公式,圆的方程的两种形式,直线与圆、圆与圆的位置关系等内容,欢迎下载使用。