新高考数学一轮复习题型归纳讲义专题15概率与分布列 15.1概率(含解析)
展开专题十五 《概率与分布列》讲义
15.1 概率
知识梳理.概率
1.事件的相关概念
2.频数、频率和概率
(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
(2)概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率.
3.事件的关系与运算
名称
条件
结论
符号表示
包含关系
若A发生,则B一定发生
事件B包含事件A(事件A包含于事件B)
B⊇A(或A⊆B)
相等关系
若B⊇A且A⊇B
事件A与事件B相等
A=B
并(和)事件
A发生或B发生
事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交(积)事件
A发生且B发生
事件A与事件B的交事件(或积事件)
A∩B(或AB)
互斥事件
A∩B为不可能事件
事件A与事件B互斥
A∩B=∅
对立事件
A∩B为不可能事件,A∪B为必然事件
事件A与事件B互为对立事件
A∩B=∅,P(A∪B)=1
4.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率为.
(3)不可能事件的概率为.
(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=,P(A)=1-P(B).
5.古典概型
(1)特点:
①有限性:在一次试验中所有可能出现的结果只有有限个,即只有有限个不同的基本事件.
②等可能性:每个基本事件出现的可能性是均等的.
(2)计算公式:
P(A)=
题型一. 随机事件——互斥、对立事件
1.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )
A.至少有一个白球;至少有一个红球
B.至少有一个白球;红、黑球各一个
C.恰有一个白球;一个白球一个黑球
D.至少有一个白球;都是白球
【解答】解:袋中装有红球3个、白球2个、黑球1个,从中任取2个,
在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立;
在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,
是互斥而不对立的两个事件,故B成立;
在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C不成立;
在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.
故选:B.
2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是( )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动卡
【解答】解:∵在5张电话卡中,有3张移动卡和2张联通卡,
从中任取2张,若事件“2张全是移动卡”的概率是,
∴概率是的事件是“2张全是移动卡”的对立事件,
∴概率是的事件是“至多有一张移动卡”.
故选:A.
3.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则下列说法正确的是( )
A.乙不输的概率是 B.甲获胜的概率是
C.甲不输的概率是 D.乙输的概率是
【解答】解:甲乙两人下棋比赛,记“两人下成和棋”为事件A,“乙获胜”为事件B,则A,B互斥,则P(A),P(B),
则乙不输即为事件A+B,由互斥事件的概率公式可得,P(A+B)=P(A)+P(B),
则甲胜的概率是1﹣P(A+B)=1,
则甲不输即为甲获胜或和棋的概率为,
乙输的概率是就是甲获胜的概率,
故选:D.
4.(2012·湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件以上
顾客数(人)
x
30
25
y
10
结算时间(分钟/人
1
1.5
2
2.5
3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
【解答】解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;
顾客一次购物的结算时间的平均值为1.9(分钟);
(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;
A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;
将频率视为概率可得P(A1);P(A2);P(A3)
∴P(A)=P(A1)+P(A2)+P(A3)=0.15+0.3+0.25=0.7
∴一位顾客一次购物的结算时间不超过2分钟的概率为0.7.
5.(2017·全国3)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
【解答】解:(1)由题意知X的可能取值为200,300,500,
P(X=200)0.2,
P(X=300),
P(X=500)0.4,
∴X的分布列为:
X
200
300
500
P
0.2
0.4
0.4
(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,
∴只需考虑200≤n≤500,
当300≤n≤500时,
若最高气温不低于25,则Y=6n﹣4n=2n;
若最高气温位于区间[20,25),则Y=6×300+2(n﹣300)﹣4n=1200﹣2n;
若最高气温低于20,则Y=6×200+2(n﹣200)﹣4n=800﹣2n,
∴EY=2n×0.4+(1200﹣2n)×0.4+(800﹣2n)×0.2=640﹣0.4n,
当200≤n≤300时,
若最高气温不低于20,则Y=6n﹣4n=2n,
若最高气温低于20,则Y=6×200+2(n﹣200)﹣4n=800﹣2n,
∴EY=2n×(0.4+0.4)+(800﹣2n)×0.2=160+1.2n.
∴n=300时,Y的数学期望达到最大值,最大值为520元.
题型二. 古典概型
1.(2019·全国2)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
A. B. C. D.
【解答】解:法一:由题意,可知:
根据组合的概念,可知:
从这5只兔子中随机取出3只的所有情况数为,
恰有2只测量过该指标的所有情况数为.
∴p.
法二:设其中做过测试的3只兔子为a,b,c,剩余的2只为A,B,则从这5只中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{b,A,B},{c,A,B}10种,其中恰好有两只做过测试的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}6种,故恰有两只做过测试的概率为.
故选:B.
2.某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是( )
A. B. C. D.
【解答】解:男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作,则男生为53人,女生为2人,
从这5人中随机选取2人,共有C52=10种,其中全时女生的有1种,
故至少有1名男生的概率是1,
故选:D.
3.口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取出1个球,则两次取出的球颜色不同的概率是( )
A. B. C. D.
【解答】解:∵口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,
有放回的连续抽取2次,每次从中任意地取出1个球,
∴基本事件总数n9,
能两次取出的球颜色不同包含的基本事件个数m6,
∴能两次取出的球颜色不同的概率p.
故选:C.
4.在五个数1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率( )
A. B. C. D.
【解答】解:在五个数1,2,3,4,5中,随机取出三个数字,
基本事件总数n10,
剩下两个数字都是奇数包含的基本事件个数m3.
则剩下两个数字都是奇数的概率p.
故选:A.
5.(2019·全国1)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )
A. B. C. D.
【解答】解:在所有重卦中随机取一重卦,
基本事件总数n=26=64,
该重卦恰有3个阳爻包含的基本个数m20,
则该重卦恰有3个阳爻的概率p.
故选:A.
6.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.
(1)求出a的值;
(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
【解答】解:(1)由频率分布直方图得:
10×(0.010+0.015+a+0.030+0.010)=1,
解得a=0.035.
(2)平均数为20×0.1+30×0.15+40×0.35+50×0.3+60×0.1=41.5岁.
设中位数为x,则10×0.010+10×0.015+(x﹣35)×0.035=0.5,
∴x≈42.1岁.
(3)第1,2组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,
则第1,2组抽取的人数分别为2人,3人,分别记为a1,a2,b1,b2,b3.
设从5人中随机抽取3人,为:
(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)共10个基本事件,
其中第2组恰好抽到2人包含:(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),共6个基本事件,
从而第2组中抽到2人的概率p.
课后作业. 概率
1.甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为,乙及格的概率为,丙及格的概率为,三人各答一次,则三人中只有一人及格的概率为( )
A. B. C. D.以上都不对
【解答】解:仅甲及格的概率为 ,仅乙及格的概率为,
仅丙及格的概率为,
故三人各答一次,则三人中只有一人及格的概率为 ,
故选:C.
2.某校投篮比赛规则如下:选手若能连续命中两次,即停止投篮,晋级下一轮.假设某选手每次命中率都是0.6,且每次投篮结果相互独立,则该选手恰好投篮4次晋级下一轮的概率为( )
A. B. C. D.
【解答】解:根据题意得,该选手第二次不中,
第三次和第四次必须投中,
∴该选手恰好投篮4次晋级下一轮的概率为:
.
故选:D.
3.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”.从上述回答分析,丙是第一名的概率是( )
A. B. C. D.
【解答】解:∵甲和乙都不可能是第一名,
∴第一名只可能是丙、丁或戊,
又考虑到所有的限制条件对丙、丁都没有影响,
∴这三个人获得第一名是等概率事件,
∴丙是第一名的概率是.
故选:B.
4.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(单位:吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中a的值;
(2)设该市有50万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(3)若该市政府希望使80%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.(结果保留到小数点后三位)
【解答】解:(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04,
同理在[0.5,1),[1,1.5),[1.5,2),[2,2.5),[2.5,3),[3,3.5),[3.5,4),[4,4.5]
中的频率分别为0.08,0.5×a,0.20,0.26,0.5×a,0.06,0.04,0.02;
由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,
解得a=0.30;…(4分)
(2)由(1)知,100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12;
由以上样本的频率分布,可以估计全市50万居民中月均用水量不低于3吨的人数为50万×0.12=6(万);…(8分)
(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.80,
而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.80,
所以2.5≤x<3;
由0.3×(x﹣2.5)=0.80﹣0.73,解得x≈2.733;
所以估计月用水量标准为2.733吨时,80%的居民每月的用水量不超过标准.…(12分)
5.工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y进行检测,一共抽取了48件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y有关,具体见表.
质量指标Y
[9.4,9.8)
[9.8,10.2]
(10.2,10.6]
频数
8
24
16
一年内所需维护次数
2
0
1
(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标Y的平均值(保留两位小数);
(2)用分层抽样的方法从上述样本中先抽取6件产品,再从6件产品中随机抽取2件产品,求这2件产品的指标Y都在[9.8,10.2]内的概率;
(3)已知该厂产品的维护费用为300元/次.工厂现推出一项服务:若消费者在购买该厂产品时每件多加100元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这48件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?
【解答】解:(1)指标Y的平均值为:10.07.
(2)由分层抽样法知,先抽取的件产品中,
指标Y在[9.8,10.2]内的有3件,记为A1,A2,A3,
指标Y在(10.2,10.6]内的有2件,记为B1,B2,
指标Y在[9.4,9.8)内的有1件,记为C,
从6件产品中,随机抽取2件产品,共有基本事件15个,分别为:
(A1,A2),(A1,A3),(A1,B1),(A1,B1),(A1,B2),
(A1,C),(A2,A3),(A2,B1),
(A2,B2),(A2,C),(A3,B1),(A3,B2),(A3,C),
(B1,B2),(B1,C),(B2,C),
其中,指标Y都在[9.8,10.2]内的概率为P.
(3)不妨设每件产品的售价为x元,假设这48件样品每件都不购买该服务,
则购买支出为48x元,其中有16件产品一年内的维护费用为300元/件,
有8件产品一年内的维护费用为600元/件,
此时平均每件产品的消费费用为η(48x+16×300+8×600)=x+200元.
假设为这48件产品每件产品都购买该项服务,则购买支出为48(x+100)元,
一年内只有8件产品要花费维护,需支出8×300=2400元,
平均每件产品的消费费用:
ξ[48(x+100)+8×300]=x+150元,
∴该服务值得购买.
6.为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.图中,课程A,B,C,D,E为人文类课程,课程F,G,H为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组M”).
(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组M”中选择F课程或G课程的同学,并且这些同学以自愿报名缴费的方式参加活动.选择F课程的学生中有x人参加科学营活动,每人需缴纳2000元,选择G课程的学生中有y人参加该活动,每人需缴纳1000元.记选择F课程和G课程的学生自愿报名人数的情况为(x,y),参加活动的学生缴纳费用总和为S元.
(ⅰ)当S=4000时,写出(x,y)的所有可能取值;
(ⅱ)若选择G课程的同学都参加科学营活动,求S>4500元的概率.
【解答】(本小题满分13分)
解:(Ⅰ)选择人文类课程的人数为(100+200+400+200+300)×1%=12(人),
选择自然科学类课程的人数为(300+200+300)×1%=8(人).
(Ⅱ)(ⅰ)当缴纳费用S=4000时,(x,y)只有两种取值情况:(2,0),(1,2);
(ⅱ)设事件A:若选择G课程的同学都参加科学营活动,缴纳费用总和S超过4500元.
在“组M”中,选择F课程和G课程的人数分别为3人和2人.
由于选择G课程的两名同学都参加,下面考虑选择F课程的3位同学参加活动的情况.
设每名同学报名参加活动用a表示,不参加活动用b表示,
则3名同学报名参加活动的情况共有以下8种情况:aaa,aab,aba,baa,bba,bab,abb,bbb.
当缴纳费用总和S超过4500元时,选择F课程的同学至少要有2名同学参加,有如下4种:aaa,aab,aba,baa.
所以,S>4500元的概率.
声明:试题解析著作权属所有,未经书面同意,不得复制发布
日期:2021/9/6 22:56:06;用户:15942715433;邮箱:15942715433;学号:32355067
新高考数学一轮复习题型归纳讲义专题15概率与分布列 15.4正态分布(含解析): 这是一份新高考数学一轮复习题型归纳讲义专题15概率与分布列 15.4正态分布(含解析),共14页。试卷主要包含了4 正态分布,3,P=0,8<Z<212,2.,97,s0,134﹣9,6克.,504≈23等内容,欢迎下载使用。
新高考数学一轮复习题型归纳讲义专题15概率与分布列 15.3二项分布与超几何分布(含解析): 这是一份新高考数学一轮复习题型归纳讲义专题15概率与分布列 15.3二项分布与超几何分布(含解析),共17页。试卷主要包含了3 二项分布与超几何分布,96.,8千克的为合格.等内容,欢迎下载使用。
新高考数学一轮复习题型归纳讲义专题15概率与分布列 15.2条件概率与独立事件(含解析): 这是一份新高考数学一轮复习题型归纳讲义专题15概率与分布列 15.2条件概率与独立事件(含解析),共12页。试卷主要包含了2 条件概率与独立事件等内容,欢迎下载使用。